Small hairy black holes in global AdS spacetime

  • Pallab Basu
  • Jyotirmoy Bhattacharya
  • Sayantani Bhattacharyya
  • R. Loganayagam
  • Shiraz Minwalla
  • V. Umesh


We study small charged black holes in global AdS spacetime in the presence of a charged massless minimally coupled scalar field. In a certain parameter range these black holes suffer from well known superradiant instabilities. We demonstrate that the end point of the resultant tachyon condensation process is a hairy black hole which we construct analytically in a perturbative expansion in the black hole radius. At leading order our solution is a small undeformed RNAdS black hole immersed into a charged scalar condensate that fills the AdS ‘box’. These hairy black hole solutions appear in a two parameter family labelled by their mass and charge. Their mass is bounded from below by a function of their charge; at the lower bound a hairy black hole reduces to a regular horizon free soliton which can also be thought of as a nonlinear Bose condensate. We compute the microcanonical phase diagram of our system at small mass, and demonstrate that it exhibits a second order ‘phase transition’ between the RNAdS black hole and the hairy black hole phases.


Solitons Monopoles and Instantons Black Holes 


  1. [1]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].ADSGoogle Scholar
  2. [2]
    S. Sachdev, Condensed matter and AdS/CFT, arXiv:1002.2947 [SPIRES].
  3. [3]
    G.T. Horowitz, Introduction to Holographic Superconductors, arXiv:1002.1722 [SPIRES].
  4. [4]
    S.A. Hartnoll, Quantum Critical Dynamics from Black Holes, arXiv:0909.3553 [SPIRES].
  5. [5]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES]. Google Scholar
  7. [7]
    P. Basu, J. He, A. Mukherjee and H.-H. Shieh, Superconductivity from D3/D7: Holographic Pion Superfluid, JHEP 11 (2009) 070 [arXiv:0810.3970] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    C.P. Herzog and S.S. Pufu, The Second Sound of SU(2), JHEP 04 (2009) 126 [arXiv:0902.0409] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    R. Gregory, S. Kanno and J. Soda, Holographic Superconductors with Higher Curvature Corrections, JHEP 10 (2009) 010 [arXiv:0907.3203] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    J. Sonner, A Rotating Holographic Superconductor, Phys. Rev. D 80 (2009) 084031 [arXiv:0903.0627] [SPIRES].ADSGoogle Scholar
  11. [11]
    J.D. Bekenstein, Extraction of energy and charge from a black hole, Phys. Rev. D7 (1973) 949 [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    W.H. Press and S.A. Teukolsky, Floating Orbits, Superradiant Scattering and the Black-hole Bomb, Nature 238 (1972) 211. CrossRefADSGoogle Scholar
  13. [13]
    T. Nishioka, S. Ryu and T. Takayanagi, Holographic Superconductor/Insulator Transition at Zero Temperature, JHEP 03 (2010) 131 [arXiv:0911.0962] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    D. Kastor and J.H. Traschen, Horizons inside classical lumps, Phys. Rev. D 46 (1992) 5399 [hep-th/9207070] [SPIRES].ADSGoogle Scholar
  15. [15]
    F.E. Schunck and E.W. Mielke, General relativistic boson stars, Class. Quant. Grav. 20 (2003) R301 [arXiv:0801.0307] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    D. Astefanesei and E. Radu, Boson stars with negative cosmological constant, Nucl. Phys. B 665 (2003) 594 [gr-qc/0309131] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    R.M. Wald, On the instability of the N = 1 Einstein Yang-Mills black holes and mathematically related systems, J. Math. Phys. 33 (1992) 248 [SPIRES]. MATHCrossRefMathSciNetADSGoogle Scholar
  18. [18]
    M.D. Seifert and R.M. Wald, A general variational principle for spherically symmetric perturbations in diffeomorphism covariant theories, Phys. Rev. D 75 (2007) 084029 [gr-qc/0612121] [SPIRES].MathSciNetADSGoogle Scholar
  19. [19]
    V.E. Hubeny and M. Rangamani, Unstable horizons, JHEP 05 (2002) 027 [hep-th/0202189] [SPIRES]. CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    K. Maeda, S. Fujii and J.-i. Koga, The final fate of instability of Reissner-Nordstróm-anti-de Sitter black holes by charged complex scalar fields, Phys. Rev. D 81 (2010) 124020 [arXiv:1003.2689] [SPIRES].ADSGoogle Scholar
  21. [21]
    S.S. Gubser and F.D. Rocha, The gravity dual to a quantum critical point with spontaneous symmetry breaking, Phys. Rev. Lett. 102 (2009) 061601 [arXiv:0807.1737] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    S.S. Gubser and A. Nellore, Ground states of holographic superconductors, Phys. Rev. D 80 (2009) 105007 [arXiv:0908.1972] [SPIRES].ADSGoogle Scholar
  23. [23]
    G.T. Horowitz and M.M. Roberts, Zero Temperature Limit of Holographic Superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    H.K. Kunduri, J. Lucietti and H.S. Reall, Gravitational perturbations of higher dimensional rotating black holes: Tensor Perturbations, Phys. Rev. D 74 (2006) 084021 [hep-th/0606076] [SPIRES].MathSciNetADSGoogle Scholar
  25. [25]
    V. Cardoso, O.J.C. Dias and S. Yoshida, Classical instability of Kerr-AdS black holes and the issue of final state, Phys. Rev. D 74 (2006) 044008 [hep-th/0607162] [SPIRES].ADSGoogle Scholar
  26. [26]
    J.P. Gauntlett, J.B. Gutowski, C.M. Hull, S. Pakis and H.S. Reall, All supersymmetric solutions of minimal supergravity in five dimensions, Class. Quant. Grav. 20 (2003) 4587 [hep-th/0209114] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  27. [27]
    J.B. Gutowski and H.S. Reall, Supersymmetric AdS 5 black holes, JHEP 02 (2004) 006 [hep-th/0401042] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    J.B. Gutowski and H.S. Reall, General supersymmetric AdS 5 black holes, JHEP 04 (2004) 048 [hep-th/0401129] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Pallab Basu
    • 1
  • Jyotirmoy Bhattacharya
    • 2
  • Sayantani Bhattacharyya
    • 2
  • R. Loganayagam
    • 2
  • Shiraz Minwalla
    • 2
  • V. Umesh
    • 2
  1. 1.University of British ColumbiaVancouverCanada
  2. 2.Tata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations