The electroweak sector of the NMSSM at the one-loop level

  • Florian Staub
  • Werner Porod
  • Björn Herrmann
Open Access


We present the electroweak spectrum for the Next-to-Minimal Supersymmetric Standard Model at the one-loop level, e.g. the masses of Higgs bosons, sleptons, charginos and neutralinos. For the numerical evaluation we present a mSUGRA variant with nonuniversal Higgs mass parameters squared and we compare our results with existing ones in the literature. Moreover, we briey discuss the implications of our results for the calculation of the relic density.


Supersymmetry Phenomenology 


  1. [1]
    J. Wess and B. Zumino, Supergauge Transformations In Four-Dimensions, Nucl. Phys. B 70 (1974) 39 [SPIRES]. CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    P. Fayet and S. Ferrara, Supersymmetry, Phys. Rept. 32 (1977) 249 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    H.P. Nilles, Supersymmetry, Supergravity and Particle Physics, Phys. Rept. 110 (1984) 1 [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    H.E. Haber and G.L. Kane, The Search for Supersymmetry: Probing Physics Beyond the Standard Model, Phys. Rept. 117 (1985) 75 [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    E. Witten, Dynamical Breaking of Supersymmetry, Nucl. Phys. B 188 (1981) 513 [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    S. Dimopoulos, S. Raby and F. Wilczek, Supersymmetry and the Scale of Unification, Phys. Rev. D 24 (1981) 1681 [SPIRES].ADSGoogle Scholar
  7. [7]
    L.E. Ibáñez and G.G. Ross, Low-Energy Predictions in Supersymmetric Grand Unified Theories, Phys. Lett. B 105 (1981) 439 [SPIRES].ADSGoogle Scholar
  8. [8]
    U. Amaldi, W. de Boer and H. Furstenau, Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP, Phys. Lett. B 260 (1991) 447 [SPIRES].ADSGoogle Scholar
  9. [9]
    P. Langacker and M.-x. Luo, Implications of precision electroweak experiments for M t , ρ 0 , sin2 θ W and grand unification, Phys. Rev. D 44 (1991) 817 [SPIRES].ADSGoogle Scholar
  10. [10]
    J.R. Ellis, S. Kelley and D.V. Nanopoulos, Probing the desert using gauge coupling unification, Phys. Lett. B 260 (1991) 131 [SPIRES].ADSGoogle Scholar
  11. [11]
    J.R. Ellis, J.S. Hagelin, D.V. Nanopoulos, K.A. Olive and M. Srednicki, Supersymmetric relics from the big bang, Nucl. Phys. B 238 (1984) 453 [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    F.D. Steffen, Dark Matter Candidates -Axions, Neutralinos, Gravitinos and Axinos, Eur. Phys. J. C 59 (2009) 557 [arXiv:0811.3347] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    J.E. Kim and H.P. Nilles, The μ Problem and the Strong CP Problem, Phys. Lett. B 138 (1984) 150 [SPIRES].MathSciNetADSGoogle Scholar
  14. [14]
    P. Fayet, Supergauge Invariant Extension of the Higgs Mechanism and a Model for the electron and Its Neutrino, Nucl. Phys. B 90 (1975) 104 [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    P. Fayet, Supersymmetry and Weak, Electromagnetic and Strong Interactions, Phys. Lett. B 64 (1976) 159 [SPIRES].ADSGoogle Scholar
  16. [16]
    P. Fayet, Spontaneously Broken Supersymmetric Theories of Weak, Electromagnetic and Strong Interactions, Phys. Lett. B 69 (1977) 489 [SPIRES].ADSGoogle Scholar
  17. [17]
    P. Fayet, Relations Between the Masses of the Superpartners of Leptons and Quarks, the Goldstino Couplings and the Neutral Currents, Phys. Lett. B 84 (1979) 416 [SPIRES].ADSGoogle Scholar
  18. [18]
    H.P. Nilles, M. Srednicki and D. Wyler, Weak Interaction Breakdown Induced by Supergravity, Phys. Lett. B 120 (1983) 346 [SPIRES].ADSGoogle Scholar
  19. [19]
    J.M. Frere, D.R.T. Jones and S. Raby, Fermion Masses and Induction of the Weak Scale by Supergravity, Nucl. Phys. B 222 (1983) 11 [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    J.P. Derendinger and C.A. Savoy, Quantum Effects and SU(2) × U(1) Breaking in Supergravity Gauge Theories, Nucl. Phys. B 237 (1984) 307 [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    J.R. Ellis, J.F. Gunion, H.E. Haber, L. Roszkowski and F. Zwirner, Higgs Bosons in a Nonminimal Supersymmetric Model, Phys. Rev. D 39 (1989) 844 [SPIRES].ADSGoogle Scholar
  22. [22]
    M. Drees, Supersymmetric Models with Extended Higgs Sector, Int. J. Mod. Phys. A 4 (1989) 3635 [SPIRES].ADSGoogle Scholar
  23. [23]
    U. Ellwanger, M. Rausch de Traubenberg and C.A. Savoy, Particle spectrum in supersymmetric models with a gauge singlet, Phys. Lett. B 315 (1993) 331 [hep-ph/9307322] [SPIRES].ADSGoogle Scholar
  24. [24]
    U. Ellwanger, M. Rausch de Traubenberg and C.A. Savoy, Higgs phenomenology of the supersymmetric model with a gauge singlet, Z. Phys. C 67 (1995) 665 [hep-ph/9502206] [SPIRES].ADSGoogle Scholar
  25. [25]
    U. Ellwanger, M. Rausch de Traubenberg and C.A. Savoy, Phenomenology of supersymmetric models with a singlet, Nucl. Phys. B 492 (1997) 21 [hep-ph/9611251] [SPIRES].ADSGoogle Scholar
  26. [26]
    T. Elliott, S.F. King and P.L. White, Unification constraints in the next-to-minimal supersymmetric standard model, Phys. Lett. B 351 (1995) 213 [hep-ph/9406303] [SPIRES].ADSGoogle Scholar
  27. [27]
    S.F. King and P.L. White, Resolving the constrained minimal and next-to-minimal supersymmetric standard models, Phys. Rev. D 52 (1995) 4183 [hep-ph/9505326] [SPIRES].ADSGoogle Scholar
  28. [28]
    G. Bélanger, F. Boudjema, C. Hugonie, A. Pukhov and A. Semenov, Relic density of dark matter in the NMSSM, JCAP 09 (2005) 001 [hep-ph/0505142] [SPIRES].Google Scholar
  29. [29]
    C. Hugonie, G. Bélanger and A. Pukhov, Dark Matter in the Constrained NMSSM, JCAP 11 (2007) 009 [arXiv:0707.0628] [SPIRES].ADSGoogle Scholar
  30. [30]
    U. Ellwanger and C. Hugonie, NMSPEC: A Fortran code for the sparticle and Higgs masses in the NMSSM with GUT scale boundary conditions, Comput. Phys. Commun. 177 (2007) 399 [hep-ph/0612134] [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    U. Ellwanger and C. Hugonie, NMHDECAY 2.0: An Updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM, Comput. Phys. Commun. 175 (2006) 290 [hep-ph/0508022] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    U. Ellwanger, J.F. Gunion and C. Hugonie, NMHDECAY : A Fortran code for the Higgs masses, couplings and decay widths in the NMSSM, JHEP 02 (2005) 066 [hep-ph/0406215] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    G. Degrassi and P. Slavich, On the radiative corrections to the neutral Higgs boson masses in the NMSSM, Nucl. Phys. B 825 (2010) 119 [arXiv:0907.4682] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-j. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The Next-to-Minimal Supersymmetric Standard Model, arXiv:0910.1785 [SPIRES].
  36. [36]
    F. Staub, Automatic Calculation of supersymmetric Renormalization Group Equations and Self Energies, arXiv:1002.0840 [SPIRES].
  37. [37]
    F. Staub, From Superpotential to Model Files for FeynArts and CalcHep/ CompHEP, Comput. Phys. Commun. 181 (2010) 1077 [arXiv:0909.2863] [SPIRES].CrossRefADSGoogle Scholar
  38. [38]
    F. Staub, SARAH, arXiv:0806.0538 [SPIRES].
  39. [39]
    A.H. Chamseddine, R.L. Arnowitt and P. Nath, Locally Supersymmetric Grand Unification, Phys. Rev. Lett. 49 (1982) 970 [SPIRES]. CrossRefADSGoogle Scholar
  40. [40]
    A. Djouadi et al., Benchmark scenarios for the NMSSM, JHEP 07 (2008) 002 [arXiv:0801.4321] [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    A. Djouadi, U. Ellwanger and A.M. Teixeira, Phenomenology of the constrained NMSSM, JHEP 04 (2009) 031 [arXiv:0811.2699] [SPIRES].CrossRefADSGoogle Scholar
  42. [42]
    S.P. Martin and M.T. Vaughn, Two loop renormalization group equations for soft supersymmetry breaking couplings, Phys. Rev. D 50 (1994) 2282 [Erratum ibid. D 78 (2008) 039903] [hep-ph/9311340] [SPIRES].ADSGoogle Scholar
  43. [43]
    F. Staub, B. Herrmann and W. Porod, Analytical expressions of the Next-to-minimal Supersymmetric Standard Model,∼fnstaub/NMSSM.pdf.
  44. [44]
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + ecolliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    B.C. Allanach et al., SUSY Les Houches Accord 2, Comp. Phys. Commun. 180 (2009) 8 [arXiv:0801.0045] [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    G. Bélanger, S. Kraml and A. Pukhov, Comparison of SUSY spectrum calculations and impact on the relic density constraints from WMAP, Phys. Rev. D 72 (2005) 015003 [hep-ph/0502079] [SPIRES].ADSGoogle Scholar
  47. [47]
    E. Komatsu et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, arXiv:1001.4538 [SPIRES].
  48. [48]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs2.0: A program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [SPIRES].CrossRefADSGoogle Scholar
  49. [49]
    A. Pukhov, Calchep 2.3: MSSM, structure functions, event generation, 1 and generation of matrix elements for other packages, hep-ph/0412191 [SPIRES].
  50. [50]
    B. Herrmann and M. Klasen, SUSY-QCD Corrections to Dark Matter Annihilation in the Higgs Funnel, Phys. Rev. D 76 (2007) 117704 [arXiv:0709.0043] [SPIRES];ADSGoogle Scholar
  51. [51]
    B. Herrmann, M. Klasen and K. Kovarik, Neutralino Annihilation into Massive Quarks with SUSY -QCD Corrections, Phys. Rev. D 79 (2009) 061701 [arXiv:0901.0481] [SPIRES].ADSGoogle Scholar
  52. [52]
    B. Herrmann, M. Klasen and K. Kovarik, SUSY-QCD effects on neutralino dark matter annihilation beyond scalar or gaugino mass unification, Phys. Rev. D 80 (2009) 085025 [arXiv:0907.0030] [SPIRES].ADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Florian Staub
    • 1
  • Werner Porod
    • 1
    • 2
  • Björn Herrmann
    • 3
    • 1
  1. 1.Institut für Theoretische Physik und AstrophysikUniversität WürzburgWürzburgGermany
  2. 2.AHEP Group, Institut de Física Corpuscular - C.S.I.C.Universitat de ValènciaValènciaSpain
  3. 3.Deutsches Elektronen-Synchrotron (DESY), Theory groupHamburgGermany

Personalised recommendations