Advertisement

Effective supersymmetry at the LHC

  • Howard Baer
  • Sabine Kraml
  • Andre Lessa
  • Sezen Sekmen
  • Xerxes Tata
Open Access
Article

Abstract

We investigate the phenomenology of Effective Supersymmetry (ESUSY) models wherein electroweak gauginos and third generation scalars have masses up to about 1 TeV while first and second generation scalars lie in the multi-TeV range. Such models ameliorate the SUSY flavor and CP problems via a decoupling solution, while at the same time maintaining naturalness. In our analysis, we assume independent GUT scale mass parameters for third and first/second generation scalars and for the Higgs scalars, in addition to m 1/2, tan β and A 0, and require radiative electroweak symmetry breaking as usual. We analyse the parameter space which is consistent with current constraints, by means of a Markov Chain Monte Carlo scan. The lightest MSSM particle (LMP) is mostly, but not always the lightest neutralino, and moreover, the thermal relic density of the neutralino LMP is frequently very large. These models may phenomenologically be perfectly viable if the LMP before nucleosynthesis decays into the axino plus SM particles. Dark matter is then an axion/axino mixture. At the LHC, the most important production mechanisms are gluino production (for m 1/2 ≲ 700 GeV) and third generation squark production, while SUSY events rich in b-jets are the hallmark of the ESUSY scenario. We present a set of ESUSY benchmark points with characteristic features and discuss their LHC phenomenology.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    S. Dimopoulos and H. Georgi, Softly broken supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [SPIRES].ADSCrossRefGoogle Scholar
  2. [2]
    N. Sakai, Naturalness in supersymmetric guts, Zeit. Phys. C 11 (1981) 153 [SPIRES].ADSGoogle Scholar
  3. [3]
    Y. Nir and N. Seiberg, Should squarks be degenerate?, Phys. Lett. B 309 (1993) 337 [hep-ph/9304307] [SPIRES].ADSGoogle Scholar
  4. [4]
    M. Dine, A. Kagan and S. Samuel, Naturalness in supersymmetry, or raising the supersymmetry breaking scale, Phys. Lett. B 243 (1990) 250 [SPIRES].ADSGoogle Scholar
  5. [5]
    N. Arkani-Hamed and H. Murayama, Can the supersymmetric flavor problem decouple?, Phys. Rev. D 56 (1997) 6733 [hep-ph/9703259] [SPIRES].ADSGoogle Scholar
  6. [6]
    M. Drees, N =1 supergravity guts with noncanonical kinetic energy terms, Phys. Rev. D 33 (1986) 1468 [SPIRES].ADSGoogle Scholar
  7. [7]
    S. Dimopoulos and G.F. Giudice, Naturalness constraints in supersymmetric theories with nonuniversal soft terms, Phys. Lett. B 357 (1995) 573 [hep-ph/9507282] [SPIRES].ADSGoogle Scholar
  8. [8]
    A. Pomarol and D. Tomassini, Horizontal symmetries for the supersymmetric flavor problem, Nucl. Phys. B 466 (1996) 3 [hep-ph/9507462] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    A.G. Cohen, D.B. Kaplan and A.E. Nelson, The more minimal supersymmetric standard model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [SPIRES].ADSGoogle Scholar
  10. [10]
    T. Teubner, K. Hagiwara, R. Liao, A.D. Martin and D. Nomura, Update of g - 2 of the muon and Δα, arXiv:1001.5401 [SPIRES].
  11. [11]
    N. J arosik et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky maps, systematic errors and basic results, arXiv:1001.4744 [SPIRES].
  12. [12]
    E. Komatsu et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological interpretation, arXiv:1001.4538 [SPIRES].
  13. [13]
    R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 1440 [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    R.D. Peccei and H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons, Phys. Rev. D 16 (1977) 1791 [SPIRES].ADSGoogle Scholar
  15. [15]
    S. Weinberg, A new light boson?, Phys. Rev. Lett. 40 (1978) 223 [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    F. Wilczek, Problem of strong p and t invariance in the presence of instantons, Phys. Rev. Lett. 40 (1978) 279 [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    H. Baer, A.D. Box and H. Summy, Mainly axion cold dark matter in the minimal supergravity model, JHEP 08 (2009) 080 [arXiv:0906.2595] [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    H. Baer and A.D. Box, Fine-tuning favors mixed axion/axino cold dark matter over neutralinos in the minimal supergravity model, Eur. Phys. J. C 68 (2010) 523 [arXiv:0910.0333] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    H. Baer, A.D. Box and H. Summy, Neutralino versus axion/axino cold dark matter in the 19 parameter SUGRA model, arXiv:1005.2215 [SPIRES].
  20. [20]
    A.G. Cohen, D.B. Kaplan, F. Lepeintre and A.E. Nelson, B factory physics from effective supersymmetry, Phys. Rev. Lett. 78 (1997) 2300 [hep-ph/9610252] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    K. Agashe and M. Graesser, Supersymmetry breaking and the supersymmetric flavour problem: An analysis of decoupling the first two generation scalars, Phys. Rev. D 59 (1999) 015007 [hep-ph/9801446] [SPIRES].ADSGoogle Scholar
  22. [22]
    J . Hisano, K. Kurosawa and Y. Nomura, Natural effective supersymmetry, Nucl. Phys. B 584 (2000) 3 [hep-ph/0002286] [SPIRES].ADSCrossRefGoogle Scholar
  23. [23]
    J.A. Bagger, J.L. Feng, N. Polonsky and R.-J. Zhang, Superheavy supersymmetry from scalar mass A -parameter fixed points, Phys. Lett. B 473 (2000) 264 [hep-ph/9911255] [SPIRES].ADSGoogle Scholar
  24. [24]
    H. Baer, P. Mercadante and X. Tata, Calculable sparticle masses with radiatively driven inverted mass hierarchy, Phys. Lett. B 475 (2000) 289 [hep-ph/9912494] [SPIRES].ADSGoogle Scholar
  25. [25]
    H. Baer et al., Aspects of supersymmetric models with a radiatively driven inverted mass hierarchy, Phys. Rev. D 64 (2001) 015002 [hep-ph/0102156] [SPIRES].ADSGoogle Scholar
  26. [26]
    H. Baer and J . Ferrandis, Supersymmetric SO(10) GUT models with Yukawa unification and a positive mu term, Phys. Rev. Lett. 87 (2001) 211803 [hep-ph/0106352] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    D. Auto et al., Yukawa coupling unification in supersymmetric models, JHEP 06 (2003) 023 [hep-ph/0302155] [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    H. Baer, S. Kraml, S. Sekmen and H. Summy, Dark matter allowed scenarios for Yukawa-unified SO(10) SUSY GUTs, JHEP 03 (2008) 056 [arXiv:0801.1831] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    H. Baer, S. Kraml and S. Sekmen, Is ‘just-so’ Higgs splitting needed for t - b - τ Yukawa unified SUSY GUTs?, JHEP 09 (2009) 005 [arXiv:0908.0134] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    T. Blazek, R. Dermisek and S. Raby, Predictions for Higgs and SUSY spectra from SO(10) Yukawa unification with μ > 0, Phys. Rev. Lett. 88 (2002) 111804 [hep-ph/0107097] [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    T. Blazek, R. Dermisek and S. Raby, Yukawa unification in SO(10), Phys. Rev. D 65 (2002) 115004 [hep-ph/0201081] [SPIRES].ADSGoogle Scholar
  32. [32]
    R. Dermisek, S. Raby, L. Roszkowski and R. Ruiz De Austri, Dark matter and B sμ + μ with minimal SO(10) soft SUSY breaking, JHEP 04 (2003) 037 [hep-ph/0304101] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    R. Dermisek, S. Raby, L. Roszkowski and R. Ruiz de Austri, Dark matter and B/sμ + μ with minimal SO(10) soft SUSY breaking. II, JHEP 09 (2005) 029 [hep-ph/0507233] [SPIRES].ADSCrossRefGoogle Scholar
  34. [34]
    W. Altmannshofer, D. Guadagnoli, S. Raby and D.M. Straub, SUSY GUTs with Yukawa unification: A Go/no-go study using FCNC processes, Phys. Lett. B 668 (2008) 385 [arXiv:0801.4363] [SPIRES].ADSGoogle Scholar
  35. [35]
    D. Guadagnoli, S. Raby and D.M. Straub, Viable and testable SUSY GUTs with Yukawa unification: the case of split trilinears, JHEP 10 (2009) 059 [arXiv:0907.4709] [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    H. Baer, C. Balázs, P. Mercadante, X. Tata and Y. Wang, Viable supersymmetric models with an inverted scalar mass hierarchy at the GUT scale, Phys. Rev. D 63 (2001) 015011 [hep-ph/0008061] [SPIRES].ADSGoogle Scholar
  37. [37]
    S. Schäfer-Nameki, C. Tamarit and G. Torroba, A hybrid higgs, arXiv:1005.0841 [SPIRES].
  38. [38]
    N. Desai and B. Mukhopadhyaya, Signals of supersymmetry with inaccessible first two families at the large hadron collider, Phys. Rev. D 80 (2009) 055019 [arXiv:0901.4883] [SPIRES]. ADSGoogle Scholar
  39. [39]
    S.-G. Kim, N. Maekawa, K.I. Nagao, M.M. Nojiri and K. Sakurai, LHC signature of supersymmetric models with non-universal sfermion masses, JHEP 10 (2009) 005 [arXiv:0907.4234] [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    N. Bernal, A. Djouadi and P. Slavich, The MSSM with heavy scalars, JHEP 07 (2007) 016 [arXiv:0705.1496] [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    N. Bernal, Dark matter direct detection in the MSSM with heavy scalars, JCA P 08 (2009) 022 [arXiv:0905.4239] [SPIRES].ADSGoogle Scholar
  42. [42]
    R. Barbieri and D. Pappadopulo, S-particles at their naturalness limits, JHEP 10 (2009) 061 [arXiv:0906.4546] [SPIRES].ADSCrossRefGoogle Scholar
  43. [43]
    M.J. White and F. Feroz, MSSM dark matter measurements at the LHC without squarks and sleptons, JHEP 07 (2010) 064 [arXiv:1002.1922] [SPIRES].ADSCrossRefGoogle Scholar
  44. [44]
    K.L. Chan, U. Chattopadhyay and P. Nath, Naturalness, weak scale supersymmetry and the prospect for the observation of supersymmetry at the Tevatron and at the LHC, Phys. Rev. D 58 (1998) 096004 [hep-ph/9710473] [SPIRES].ADSGoogle Scholar
  45. [45]
    J. Feng, K. Matchev and T. Moroi, Multi -TeV scalars are natural in minimal supergravity, Phys. Rev. Lett. 84 (2000) 2322 [hep-ph/9908309] [SPIRES].ADSCrossRefGoogle Scholar
  46. [46]
    J. Feng, K. Matchev and T. Moroi, Focus points and naturalness in supersymmetry, Phys. Rev. D 61 (2000) 075005 [hep-ph/9909334] [SPIRES].ADSGoogle Scholar
  47. [47]
    H. Baer, C.-h. Chen, F. Paige and X. Tata, Signals for minimal supergravity at the CERN large hadron collider: Multi -jet plus missing energy channel, Phys. Rev. D 52 (1995) 2746 [hep-ph/9503271] [SPIRES].ADSGoogle Scholar
  48. [48]
    H. Baer, C.-h. Chen, F. Paige and X. Tata, Signals for minimal supergravity at the CERN large hadron collider. 2: Multi -lepton channels., Phys. Rev. D 53 (1996) 6241 [hep-ph/9512383] [SPIRES].ADSGoogle Scholar
  49. [49]
    H. Baer, C.-h. Chen, M. Drees, F. Paige and X. Tata, Probing minimal supergravity at the CERN LHC for large tan β, Phys. Rev. D 59 (1999) 055014 [hep-ph/9809223] [SPIRES].ADSGoogle Scholar
  50. [50]
    H. Baer, T. Krupovnickas, S. Profumo and P. Ullio, Model independent approach to focus point supersymmetry: From dark matter to collider searches, JHEP 10 (2005) 020 [hep-ph/0507282] [SPIRES].ADSCrossRefGoogle Scholar
  51. [51]
    H. Baer and X. Tata, Weak scale supersymmetry: From superfields to scattering events, Cambridge University Press, Cambridge U.K. (2006).CrossRefGoogle Scholar
  52. [52]
    F.E. Paige, S.D. Protopopescu, H. Baer and X. Tata, ISAJET 7.69: A Monte Carlo event generator for pp, \( \overline p p \) , and e + e reactions, hep-ph/0312045 [SPIRES].
  53. [53]
    H. Baer, J. Ferrandis, S. Kraml and W. Porod, On the treatment of threshold effects in SUSY spectrum computations, Phys. Rev. D 73 (2006) 015010 [hep-ph/0511123] [SPIRES].ADSGoogle Scholar
  54. [54]
  55. [55]
    H. Baer, A. Mustafayev, S. Profumo, A. Belyaev and X. Tata, Neutralino cold dark matter in a one parameter extension of the minimal supergravity model, Phys. Rev. D 71 (2005) 095008 [hep-ph/0412059] [SPIRES]ADSGoogle Scholar
  56. [56]
    H. Baer, A. Mustafayev, S. Profumo, A. Belyaev and X. Tata, Direct, indirect and collider detection of neutralino dark matter in SUSY models with non-universal Higgs masses, JHEP 07 (2005) 065 [hep-ph/0504001] [SPIRES].ADSCrossRefGoogle Scholar
  57. [57]
    C. Böhm, A. Djouadi and M. Drees, Light scalar top quarks and supersymmetric dark matter, Phys. Rev. D 62 (2000) 035012 [hep-ph/9911496] [SPIRES].ADSGoogle Scholar
  58. [58]
    J.R. Ellis, K.A. Olive and Y. Santoso, Calculations of Neutralino-Stop Coannihilation in the CMSSM, A stropart. Phys. 18 (2003) 395 [hep-ph/0112113] [SPIRES].ADSGoogle Scholar
  59. [59]
    J. Edsjö, et al., Accurate relic densities with neutralino, chargino and sfermion coannihilations in mSUGRA, JCAP 04 (2003) 001 [hep-ph/0301106] [SPIRES].ADSGoogle Scholar
  60. [60]
    M. Drees and M.M. Nojiri, The Neutralino relic density in minimal N =1 supergravity, Phys. Rev. D 47 (1993) 376 [hep-ph/9207234] [SPIRES].ADSGoogle Scholar
  61. [61]
    H. Baer and M. Brhlik, Neutralino dark matter in minimal supergravity: direct detection vs. collider searches, Phys. Rev. D 57 (1998) 567 [hep-ph/9706509] [SPIRES].ADSGoogle Scholar
  62. [62]
    H. Baer et al., Yukawa unified supersymmetric SO(10) model: Cosmology, rare decays and collider searches, Phys. Rev. D 63 (2001) 015007 [hep-ph/0005027] [SPIRES].ADSGoogle Scholar
  63. [63]
    J.R. Ellis, T. Falk, G. Ganis, K.A. Olive and M. Srednicki, The CMSSM parameter space at large tan β, Phys. Lett. B 510 (2001) 236 [hep-ph/0102098] [SPIRES].ADSGoogle Scholar
  64. [64]
    L. Roszkowski, R. Ruiz de Austri and T. Nihei, New cosmological and experimental constraints on the CMSSM, JHEP 08 (2001) 024 [hep-ph/0106334] [SPIRES].ADSCrossRefGoogle Scholar
  65. [65]
    A. Djouadi, M. Drees and J.L. Kneur, Constraints on the minimal supergravity model and prospects for SUSY particle production at future linear e + e colliders, JHEP 08 (2001) 055 [hep-ph/0107316] [SPIRES].ADSCrossRefGoogle Scholar
  66. [66]
    A. Lahanas and V. Spanos, Implications of the pseudoscalar Higgs boson in determining the neutralino dark matter, Eur. Phys. J. C 23 (2002) 185 [hep-ph/0106345] [SPIRES].ADSGoogle Scholar
  67. [67]
    G. Bélanger, F. Boudjema, A. Pukhov and R.K. Singh, Constraining the MSSM with universal gaugino masses and implication for searches at the LHC, JHEP 11 (2009) 026 [arXiv:0906.5048] [SPIRES].CrossRefGoogle Scholar
  68. [68]
    R.R. de Austri, R. Trotta and L. Roszkowski, A Markov chain Monte Carlo analysis of the CMSSM, JHEP 05 (2006) 002 [hep-ph/0602028] [SPIRES].CrossRefGoogle Scholar
  69. [69]
    B.C. Allanach, K. Cranmer, C.G. Lester and A.M. Weber, Natural priors, CMSSM fits and LHC weather forecasts, JHEP 08 (2007) 023 [arXiv:0705.0487] [SPIRES].ADSCrossRefGoogle Scholar
  70. [70]
    R. Trotta, F. Feroz, M.P. Hobson, L. Roszkowski and R. Ruiz de Austri, The impact of priors and observables on parameter inferences in the constrained MSSM, JHEP 12 (2008) 024 [arXiv:0809.3792] [SPIRES].ADSCrossRefGoogle Scholar
  71. [71]
    F. Mahmoudi, SuperIso v2.3: A program for calculating flavor physics observables in supersymmetry, Comput. Phys. Commun. 180 (2009) 1579 [arXiv:0808.3144] [SPIRES].ADSCrossRefGoogle Scholar
  72. [72]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGA s2.0: A program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [SPIRES].ADSCrossRefGoogle Scholar
  73. [73]
    O. Buchmueller et al., Likelihood functions for supersymmetric observables in frequentist analyses of the CMSSM and NUHM1, Eur. Phys. J. C 64 (2009) 391 [arXiv:0907.5568] [SPIRES]. ADSCrossRefGoogle Scholar
  74. [74]
    Heavy Flavor Averaging Group collaboration, E. Barberio et al., Averages of bhadron and chadron properties at the end of 2007, arXiv:0808.1297 [SPIRES].
  75. [75]
    M. Misiak et al., The first estimate of \( B\left( {\overline B \to {X_s}\gamma } \right) \) at Os2), Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [SPIRES].ADSCrossRefGoogle Scholar
  76. [76]
    CDF collaboration, T. Aaltonen et al., Search for B s0μ + μ and B d0μ + μ decays with 2fb −1 of \( p\overline p \) collisions, Phys. Rev. Lett. 100 (2008) 101802 [arXiv:0712.1708] [SPIRES].ADSCrossRefGoogle Scholar
  77. [77]
    Tevatron Electroweak Working Group collaboration, Combination of CDF and D0 results on the mass of the top quark, arXiv:0903.2503 [SPIRES].
  78. [78]
    ALEPH, DELPHI, L3 and OPAL collaborations, LEP2 SUSY Working Group, http://lepsusy.web.cern.ch/lepsusy/.
  79. [79]
    CDF collaboration, T.E.W. Group, Combination of CDF and D0 measurements of the single top production cross section, arXiv:0908.2171 [SPIRES].
  80. [80]
    H. Baer and H. Summy, SO(10) SUSY GUTs, the gravitino problem, non-thermal leptogenesis and axino dark matter, Phys. Lett. B 666 (2008) 5 [arXiv:0803.0510] [SPIRES]. ADSGoogle Scholar
  81. [81]
    A.D. Box and X. Tata, Threshold and flavour effects in the renormalization group equations of the MSSM II: Dimensionful couplings, Phys. Rev. D 79 (2009) 035004 [arXiv:0810.5765] [SPIRES].ADSGoogle Scholar
  82. [82]
    L. Covi, J.E. Kim and L. Roszkowski, Axinos as cold dark matter, Phys. Rev. Lett. 82 (1999) 4180 [hep-ph/9905212] [SPIRES].ADSCrossRefGoogle Scholar
  83. [83]
    L. Covi, H.B. Kim, J.E. Kim and L. Roszkowski, Axinos as dark matter, JHEP 05 (2001) 033 [hep-ph/0101009] [SPIRES].ADSCrossRefGoogle Scholar
  84. [84]
    A. Brandenburg, L. Covi, K. Hamaguchi, L. Roszkowski and F.D. Steffen, Signatures of axinos and gravitinos at colliders, Phys. Lett. B 617 (2005) 99 [hep-ph/0501287] [SPIRES].ADSGoogle Scholar
  85. [85]
    L. Covi, L. Roszkowski and M. Small, Effects of squark processes on the axino CDM abundance, JHEP 07 (2002) 023 [hep-ph/0206119] [SPIRES].ADSCrossRefGoogle Scholar
  86. [86]
    K. Jedamzik, Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev. D 74 (2006) 103509 [hep-ph/0604251] [SPIRES].ADSGoogle Scholar
  87. [87]
    A. Freitas, F.D. Steffen, N. Tajuddin and D. Wyler, Late energy injection and cosmological constraints in axino dark matter scenarios, Phys. Lett. B 682 (2009) 193 [arXiv:0909.3293] [SPIRES].ADSGoogle Scholar
  88. [88]
    C. Berger, L. Covi, S. Kraml and F. Palorini, The number density of a charged relic, JCA P 10 (2008) 005 [arXiv:0807.0211] [SPIRES].ADSGoogle Scholar
  89. [89]
    U. Chattopadhyay, A. Datta, A. Datta, A. Datta and D.P. Roy, LHC signature of the minimal SUGRA model with a large soft scalar mass, Phys. Lett. B 493 (2000) 127 [hep-ph/0008228] [SPIRES].ADSGoogle Scholar
  90. [90]
    P.G. Mercadante, J.K. Mizukoshi and X. Tata, Using b-tagging to enhance the SUSY reach of the CERN large hadron collider, Phys. Rev. D 72 (2005) 035009 [hep-ph/0506142] [SPIRES].ADSGoogle Scholar
  91. [91]
    S.P. Das, A. Datta, M. Guchait, M. Maity and S. Mukherjee, Focus point SUSY at the LHC revisited, Eur. Phys. J. C 54 (2008) 645 [arXiv:0708.2048] [SPIRES].ADSCrossRefGoogle Scholar
  92. [92]
    R. Kadala J.K. Mizukoshi, P. Mercadante and X. Tata, Heavy-flavour tagging and the supersymmetry reach of the CERN large hadron collider, Eur. Phys. J. 56 (2008) 511 [arXiv:0803.0001] [SPIRES].CrossRefGoogle Scholar
  93. [93]
    H. Baer, S. Kraml, S. Sekmen and H. Summy, Prospects for Yukawa unified SO(10) SUSY GUTs at the CERN LHC, JHEP 10 (2008) 079 [arXiv:0809.0710] [SPIRES].ADSCrossRefGoogle Scholar
  94. [94]
    H. Baer, S. Kraml, A. Lessa and S. Sekmen, Testing Yukawa-unified SUSY during year 1 of LHC: the role of multiple b-jets, dileptons and missing E T, JHEP 02 (2010) 055 [arXiv:0911.4739] [SPIRES].ADSCrossRefGoogle Scholar
  95. [95]
    H. Baer, X. Tata and J. Woodside, Phenomenology of gluino decays via loops and top quark Yukawa coupling, Phys. Rev. D 42 (1990) 1568 [SPIRES].ADSGoogle Scholar
  96. [96]
    H. Baer and M. Brhlik, QCD improved bsγ constraints on the minimal supergravity model, Phys. Rev. D 55 (1997) 3201 [hep-ph/9610224] [SPIRES].ADSGoogle Scholar
  97. [97]
    H. Baer, M. Brhlik, D. Castano and X. Tata, bsγ constraints on the minimal supergravity model with large tan β, Phys. Rev. D 58 (1998) 015007 [hep-ph/9712305] [SPIRES].ADSGoogle Scholar
  98. [98]
    H. Baer, C.-h. Chen, F. Paige and X. Tata, Trileptons from chargino -neutralino production at the CERN large hadron collider, Phys. Rev. D 50 (1994) 4508 [hep-ph/9404212] [SPIRES].ADSGoogle Scholar
  99. [99]
    H. Baer, S. Kraml and S. Sekmen, Is ’just-so’ Higgs splitting needed for tb − τ Yukawa unified SUSY GUTs?, JHEP 09 (2009) 005 [arXiv:0908.0134] [SPIRES].ADSCrossRefGoogle Scholar
  100. [100]
    I. Hinchliffe, F.E. Paige, M.D. Shapiro, J. Soderqvist and W. Yao, Precision SUSY measurements at CERN LHC, Phys. Rev. D 55 (1997) 5520 [hep-ph/9610544] [SPIRES].ADSGoogle Scholar
  101. [101]
    I. Hinchliffe and F.E. Paige, Measurements in gauge mediated SUSY breaking models at CERN LHC, Phys. Rev. D 60 (1999) 095002 [hep-ph/9812233] [SPIRES].ADSGoogle Scholar
  102. [102]
    H. Bachacou, I. Hinchliffe and F.E. Paige, Measurements of masses in SUGRA models at CERN LHC, Phys. Rev. D 62 (2000) 015009 [hep-ph/9907518] [SPIRES].ADSGoogle Scholar
  103. [103]
    H. Baer, V. Barger, G. Shaughnessy, H. Summy and L.-t. Wang, Precision gluino mass at the LHC in SUSY models with decoupled scalars, Phys. Rev. D 75 (2007) 095010 [hep-ph/0703289] [SPIRES].ADSGoogle Scholar
  104. [104]
    C.G. Lester and D.J. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B 463 (1999) 99 [hep-ph/9906349] [SPIRES].ADSGoogle Scholar
  105. [105]
    A. Barr, C. Lester and P. Stephens, m T2 : The truth behind the glamour, J. Phys. G 29 (2003) 2343 [hep-ph/0304226] [SPIRES].ADSGoogle Scholar
  106. [106]
    W.S. Cho, K. Choi, Y.G. Kim and C.B. Park, Gluino stransverse mass, Phys. Rev. Lett. 100 (2008) 171801 [arXiv:0709.0288] [SPIRES].ADSCrossRefGoogle Scholar
  107. [107]
    W.S. Cho, K. Choi, Y.G. Kim and C.B. Park, Measuring superparticle masses at hadron collider using the transverse mass kink, JHEP 02 (2008) 035 [arXiv:0711.4526] [SPIRES].ADSCrossRefGoogle Scholar
  108. [108]
    H.-C. Cheng and Z. Han, Minimal kinematic constraints and MT2, JHEP 12 (2008) 063 [arXiv:0810.5178] [SPIRES].ADSCrossRefGoogle Scholar
  109. [109]
    K. Choi, D. Guadagnoli, S.H. Im and C.B. Park, Sparticle masses from transverse mass kinks at the LHC: the case of Yukawa-unified SUSY GUTs, arXiv:1005.0618 [SPIRES].
  110. [110]
    C. Lester and A. Barr, m TGen : Mass scale measurements in pair-production at colliders, JHEP 12 (2007) 102 [arXiv:0708.1028] [SPIRES].ADSCrossRefGoogle Scholar
  111. [111]
    B. Gripaios, Transverse observables and mass determination at hadron colliders, JHEP 02 (2008) 053 [arXiv:0709.2740] [SPIRES].ADSCrossRefGoogle Scholar
  112. [112]
    A.J. Barr, B. Gripaios and C.G. Lester, Transverse masses and kinematic constraints: from the boundary to the crease, JHEP 11 (2009) 096 [arXiv:0908.3779] [SPIRES].ADSCrossRefGoogle Scholar
  113. [113]
    K.T. Matchev, F. Moortgat, L. Pape and M. Park, Precise reconstruction of sparticle masses without ambiguities, JHEP 08 (2009) 104 [arXiv:0906.2417] [SPIRES].ADSCrossRefGoogle Scholar
  114. [114]
    J. Hisano, K. Kawagoe and M.M. Nojiri, A detailed study of the gluino decay into the third generation squarks at the CERN LHC, Phys. Rev. D 68 (2003) 035007 [hep-ph/0304214] [SPIRES].ADSGoogle Scholar
  115. [115]
    J. Hisano, K. Kawagoe, R. Kitano and M.M. Nojiri, Scenery from the top: Study of the third generation squarks at CERN LHC, Phys. Rev. D 66 (2002) 115004 [hep-ph/0204078] [SPIRES].ADSGoogle Scholar
  116. [116]
    S. Kraml and A.R. Raklev, Same-sign top quarks as signature of light stops at the LHC, Phys. Rev. D 73 (2006) 075002 [hep-ph/0512284] [SPIRES].ADSGoogle Scholar
  117. [117]
    ALEPH collaboration, A. Heister et al, Search for stable hadronizing squarks and gluinos in e + e collisions up to \( \sqrt {s} = 209\,GeV \), Eur. Phys. J. 31 (2003) 327 [hep-ex/0305071] [SPIRES].ADSCrossRefGoogle Scholar
  118. [118]
    CDF collaboration, T. Aaltonen et al., Search for long-lived massive charged particles in 1.96 TeV \( \overline p p \) collisions, Phys. Rev. Lett. 103 (2009) 021802 [arXiv:0902.1266] [SPIRES].ADSCrossRefGoogle Scholar
  119. [119]
    A.R. Raklev, Massive metastable charged (S)particles at the LHC, arXiv:0908.0315 [SPIRES].
  120. [120]
    M. Fairbairn et al., Stable massive particles at colliders, Phys. Rept. 438 (2007) 1 [hep-ph/0611040] [SPIRES].ADSCrossRefGoogle Scholar
  121. [121]
    M. Drees and X. Tata, Signals for heavy exotics at hadron colliders and supercolliders, Phys. Lett. B 252 (1990) 695 [SPIRES].ADSGoogle Scholar
  122. [122]
    H. Baer, K.-m. Cheung and J.F. Gunion, A heavy gluino as the lightest supersymmetric particle, Phys. Rev. D 59 (1999) 075002 [hep-ph/9806361] [SPIRES].ADSGoogle Scholar
  123. [123]
    OPAL collaboration, G. Abbiendi et al., Search for stable and long-lived massive charged particles in e + e collisions at \( \sqrt {s} = 130\,GeV \) to 209-GeV, Phys. Lett. B 572 (2003) 8 [hep-ex/0305031] [SPIRES].ADSGoogle Scholar
  124. [124]
    H. Baer, B.W. Harris and M.H. Reno, Next-to-leading order slepton pair production at hadron colliders, Phys. Rev. D 57 (1998) 5871 [hep-ph/9712315] [SPIRES].ADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Howard Baer
    • 1
  • Sabine Kraml
    • 2
  • Andre Lessa
    • 1
  • Sezen Sekmen
    • 3
  • Xerxes Tata
    • 4
    • 5
  1. 1.Dept. of Physics and AstronomyUniversity of OklahomaNormanU.S.A.
  2. 2.Laboratoire de Physique Subatomique et de CosmologieUJF Grenoble 1, CNRS/ IN2P3, INPGGrenobleFrance
  3. 3.Dept. of PhysicsFlorida State UniversityTallahasseeU.S.A.
  4. 4.Dept. of Physics and AstronomyUniversity of HawaiiHonoluluU.S.A.
  5. 5.Dept. of PhysicsUniversity of WisconsinMadisonU.S.A.

Personalised recommendations