Skip to main content
Log in

Measuring extended Higgs sectors as a consistent free couplings model

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Extended Higgs sectors appear in many models for physics beyond the Standard Model. Current Higgs measurements at the LHC are starting to significantly constrain them. We study their Higgs coupling patterns at tree level as well as including quantum corrections. Our benchmarks include a dark singlet-doublet extension and several twodoublet setups. Using SFitter we translate the current Higgs coupling measurements for one light Higgs state into their respective parameter spaces. Finally, we show how twoHiggs-doublet models can serve as a consistent ultraviolet completion of an assumed single Standard-Model-like Higgs boson with free couplings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132 [INSPIRE].

    ADS  Google Scholar 

  2. P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. M. Spira and P.M. Zerwas, Electroweak symmetry breaking and Higgs physics, Lect. Notes Phys. 512 (1998) 161 [hep-ph/9803257] [INSPIRE].

    ADS  Google Scholar 

  5. A. Djouadi, The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].

    ADS  Google Scholar 

  6. T. Plehn, Lectures on LHC physics, Lect. Notes Phys. 844 (2012) 1 [arXiv:0910.4182] [INSPIRE].

    Google Scholar 

  7. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  8. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  9. CMS collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, JHEP 06(2013)081[arXiv:1303.4571][INSPIRE].

    ADS  Google Scholar 

  10. CMS collaboration, CMS at the high-energy frontier. Contribution to the update of the european strategy for particle physics, CMS-NOTE-2012-006 (2012).

  11. ATLAS collaboration, Search for the standard model Higgs boson in the diphoton decay channel with 4.9 fb −1 of ATLAS data at \( \sqrt{s}=7 \) TeV, ATLAS-CONF-2011-161 (2011).

  12. ATLAS collaboration, Search for the standard model Higgs boson produced in association with a vector boson and decaying to a b-quark pair using up to 4.7 fb −1 of pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, ATLAS-CONF-2012-015 (2012).

  13. ATLAS collaboration, Search for the standard model Higgs boson in Hττ decays in proton-proton collisions with the ATLAS detector, ATLAS-CONF-2012-160 (2012).

  14. ATLAS collaboration, Search for the standard model Higgs boson in produced in association with a vector boson and decaying to bottom quarks with the ATLAS detector, ATLAS-CONF-2012-161 (2012).

  15. ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-012 (2013).

  16. ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-013 (2013).

  17. ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the WW (∗)ℓνℓν decay channel with the ATLAS detector using 25fb −1 of proton-proton collision data, ATLAS-CONF-2013-030 (2013).

  18. CMS collaboration, Search for the standard model Higgs boson in the decay channel HZZ →4 leptons in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 108(2012)111804 [arXiv:1202.1997] [INSPIRE].

    ADS  Google Scholar 

  19. CMS collaboration, 1Search for the standard model Higgs boson produced in association with W or Z bosons, and decaying to bottom quarks for HCP 2012, CMS-PAS-HIG-12-044 (2012).

  20. CMS collaboration, Updated measurements of the Higgs boson at 125 GeV in the two photon decay channel, CMS-PAS-HIG-13-001 (2013).

  21. CMS collaboration, Properties of the Higgs-like boson in the decay HZZ → 4l in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-13-002 (2013).

  22. CMS collaboration, Evidence for a particle decaying to W + W in the fully leptonic final state in a standard model Higgs boson search in pp collisions at the LHC, CMS-PAS-HIG-13-003 (2013).

  23. CMS collaboration, Search for the Standard-Model Higgs boson decaying to tau pairs in proton-proton collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-13-004 (2013).

  24. CMS collaboration, Search for the standard model Higgs boson produced in association with W or Z bosons, and decaying to bottom quarks for LHCp 2013, CMS-PAS-HIG-13-012 (2013).

  25. R. Lafaye, T. Plehn, M. Rauch, D. Zerwas and M. Dührssen, Measuring the Higgs Sector, JHEP 08 (2009) 009 [arXiv:0904.3866] [INSPIRE].

    ADS  Google Scholar 

  26. M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs couplings from LHC data, Phys. Rev. Lett. 109 (2012) 101801 [arXiv:1205.2699] [INSPIRE].

    ADS  Google Scholar 

  27. T. Plehn and M. Rauch, Higgs couplings after the discovery, Europhys. Lett. 100 (2012) 11002 [arXiv:1207.6108] [INSPIRE].

    Google Scholar 

  28. A. Azatov, R. Contino and J. Galloway, Model-independent bounds on a light Higgs, JHEP 04 (2012) 127 [Erratum ibid. 1304 (2013) 140] [arXiv:1202.3415] [INSPIRE].

    ADS  Google Scholar 

  29. A. Azatov et al., Determining Higgs couplings with a model-independent analysis of hγγ, JHEP 06(2012)134[arXiv:1204.4817][INSPIRE].

    ADS  Google Scholar 

  30. F. Bonnet, M. Gavela, T. Ota and W. Winter, Anomalous Higgs couplings at the LHC and their theoretical interpretation, Phys. Rev. D 85 (2012) 035016 [arXiv:1105.5140] [INSPIRE].

    ADS  Google Scholar 

  31. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, Phys. Lett. B 718 (2012) 469 [arXiv:1207.1347] [INSPIRE].

    ADS  Google Scholar 

  32. J. Ellis and T. You, Global analysis of the Higgs candidate with mass ∼ 125 GeV, JHEP 09 (2012)123 [arXiv:1207.1693] [INSPIRE].

    ADS  Google Scholar 

  33. J. Ellis and T. You, Updated global analysis of Higgs couplings, JHEP 06 (2013) 103 [arXiv:1303.3879] [INSPIRE].

    ADS  Google Scholar 

  34. J. Espinosa, C. Grojean, M. Mühlleitner and M. Trott, First glimpses at Higgsface, JHEP 12 (2012)045 [arXiv:1207.1717] [INSPIRE].

    ADS  Google Scholar 

  35. T. Corbett, O.J.P. Eboli, J. Gonzalez-Fraile and M. Gónzalez-García, Constraining anomalous Higgs interactions, Phys. Rev. D 86 (2012) 075013 [arXiv:1207.1344] [INSPIRE].

    ADS  Google Scholar 

  36. T. Corbett, O.J.P. Eboli, J. Gonzalez-Fraile and M. Gónzalez-García, Robust determination of the Higgs couplings: power to the data, Phys. Rev. D 87 (2013) 015022 [arXiv:1211.4580] [INSPIRE].

    ADS  Google Scholar 

  37. S. Banerjee, S. Mukhopadhyay and B. Mukhopadhyaya, New Higgs interactions and recent data from the LHC and the Tevatron, JHEP 10 (2012) 062 [arXiv:1207.3588] [INSPIRE].

    ADS  Google Scholar 

  38. N. Craig and S. Thomas, Exclusive signals of an extended Higgs sector, JHEP 11 (2012) 083 [arXiv:1207.4835] [INSPIRE].

    ADS  Google Scholar 

  39. F. Bonnet, T. Ota, M. Rauch and W. Winter, Interpretation of precision tests in the Higgs sector in terms of physics beyond the standard model, Phys. Rev. D 86 (2012) 093014 [arXiv:1207.4599] [INSPIRE].

    ADS  Google Scholar 

  40. A. Djouadi, Precision Higgs coupling measurements at the LHC through ratios of production cross sections, Eur. Phys. J. C 73 (2013) 2498 [arXiv:1208.3436] [INSPIRE].

    ADS  Google Scholar 

  41. B.A. Dobrescu and J.D. Lykken, Coupling spans of the Higgs-like boson, JHEP 02 (2013) 073 [arXiv:1210.3342] [INSPIRE].

    ADS  Google Scholar 

  42. E. Massó and V. Sanz, Limits on anomalous couplings of the Higgs to electroweak gauge bosons from LEP and LHC, Phys. Rev. D 87 (2013), no. 3 033001 [arXiv:1211.1320] [INSPIRE].

  43. G. Bélanger, B. Dumont, U. Ellwanger, J. Gunion and S. Kraml, Higgs couplings at the end of 2012, JHEP 02 (2013) 053 [arXiv:1212.5244] [INSPIRE].

    Google Scholar 

  44. C. Cheung, S.D. McDermott and K.M. Zurek, Inspecting the Higgs for new weakly interacting particles, JHEP 04 (2013) 074 [arXiv:1302.0314] [INSPIRE].

    ADS  Google Scholar 

  45. K. Cheung, J.S. Lee and P.-Y. Tseng, Higgs precision (higgcision) era begins, JHEP 05 (2013)134 [arXiv:1302.3794] [INSPIRE].

    ADS  Google Scholar 

  46. P.P. Giardino, K. Kannike, I. Masina, M. Raidal and A. Strumia, The universal Higgs fit, arXiv:1303.3570 [INSPIRE].

  47. W.-F. Chang, W.-P. Pan and F. Xu, An effective gauge-Higgs operators analysis of new physics associated with the Higgs, Phys. Rev. D 88 (2013) 033004 [arXiv:1303.7035] [INSPIRE].

    ADS  Google Scholar 

  48. A. Djouadi and G. Moreau, The couplings of the Higgs boson and its CP properties from fits of the signal strengths and their ratios at the 7 + 8 TeV LHC, arXiv:1303.6591 [INSPIRE].

  49. D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs results from natural new physics perspective, JHEP 07 (2012) 136 [arXiv:1202.3144] [INSPIRE].

    ADS  Google Scholar 

  50. D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs after the discovery: a status report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].

    ADS  Google Scholar 

  51. ATLAS collaboration, Combined coupling measurements of the Higgs-like boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-034 (2013).

  52. CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005 (2013).

  53. M. Dührssen, Measurement of Higgs boson parameters at the LHC, Czech. J. Phys. 55 (2005) B145 [INSPIRE].

    Google Scholar 

  54. M. Dührssen, Standard model Higgs searches at CERN, Eur. Phys. J. C 33 (2004) S686 [INSPIRE].

    Google Scholar 

  55. P. Bechtle, S. Heinemeyer, O. Stal, T. Stefaniak and G. Weiglein, HiggsSignals: confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC, arXiv:1305.1933 [INSPIRE].

  56. LHC Higgs Cross Section Working Group collaboration, A. David et al., LHC HXSWG interim recommendations to explore the coupling structure of a Higgs-like particle, arXiv:1209.0040 [INSPIRE].

  57. G. Passarino, NLO inspired effective lagrangians for Higgs physics, Nucl. Phys. B 868 (2013)416 [arXiv:1209.5538] [INSPIRE].

    ADS  Google Scholar 

  58. M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs couplings at a linear collider, Europhys. Lett. 101 (2013) 51001 [arXiv:1301.1322] [INSPIRE].

    ADS  Google Scholar 

  59. J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].

    ADS  Google Scholar 

  60. C.P. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].

    ADS  Google Scholar 

  61. S. Profumo, M.J. Ramsey-Musolf and G. Shaughnessy, Singlet Higgs phenomenology and the electroweak phase transition, JHEP 08 (2007) 010 [arXiv:0705.2425] [INSPIRE].

    ADS  Google Scholar 

  62. E. Pontón and L. Randall, TeV scale singlet dark matter, JHEP 04 (2009) 080 [arXiv:0811.1029] [INSPIRE].

    ADS  Google Scholar 

  63. S. Das, P.J. Fox, A. Kumar and N. Weiner, The dark side of the electroweak phase transition, JHEP 11 (2010) 108 [arXiv:0910.1262] [INSPIRE].

    ADS  Google Scholar 

  64. S. Kanemura, S. Matsumoto, T. Nabeshima and N. Okada, Can WIMP dark matter overcome the nightmare scenario?, Phys. Rev. D 82 (2010) 055026 [arXiv:1005.5651] [INSPIRE].

    ADS  Google Scholar 

  65. S. Andreas, C. Arina, T. Hambye, F.-S. Ling and M.H. Tytgat, A light scalar WIMP through the Higgs portal and CoGeNT, Phys. Rev. D 82 (2010) 043522 [arXiv:1003.2595] [INSPIRE].

    ADS  Google Scholar 

  66. O. Lebedev and H.M. Lee, Higgs portal inflation, Eur. Phys. J. C 71 (2011) 1821 [arXiv:1105.2284] [INSPIRE].

    ADS  Google Scholar 

  67. B. Batell, S. Gori and L.-T. Wang, Exploring the Higgs portal with 10 fb −1 at the LHC, JHEP 06 (2012) 172 [arXiv:1112.5180] [INSPIRE].

    ADS  Google Scholar 

  68. A. Biswas and D. Majumdar, The real gauge singlet scalar extension of standard model: a possible candidate of cold dark matter, Pramana 80 (2013) 539 [arXiv:1102.3024] [INSPIRE].

    ADS  Google Scholar 

  69. Y. Mambrini, Higgs searches and singlet scalar dark matter: Combined constraints from XENON100 and the LHC, Phys. Rev. D 84 (2011) 115017 [arXiv:1108.0671] [INSPIRE].

    ADS  Google Scholar 

  70. X. Chu, T. Hambye and M.H. Tytgat, The four basic ways of creating dark matter through a portal, JCAP 05 (2012) 034 [arXiv:1112.0493] [INSPIRE].

    ADS  Google Scholar 

  71. L. López-Honorez, T. Schwetz and J. Zupan, Higgs portal, fermionic dark matter and a standard model like Higgs at 125 GeV, Phys. Lett. B 716 (2012) 179 [arXiv:1203.2064] [INSPIRE].

    ADS  Google Scholar 

  72. I. Low, P. Schwaller, G. Shaughnessy and C.E. Wagner, The dark side of the Higgs boson, Phys. Rev. D 85 (2012) 015009 [arXiv:1110.4405] [INSPIRE].

    ADS  Google Scholar 

  73. F. Bazzocchi and M. Fabbrichesi, A simple inert model solves the little hierarchy problem and provides a dark matter candidate, Eur. Phys. J. C 73 (2013) 2303 [arXiv:1207.0951] [INSPIRE].

    ADS  Google Scholar 

  74. M. Bowen, Y. Cui and J.D. Wells, Narrow trans-TeV Higgs bosons and Hhh decays: two LHC search paths for a hidden sector Higgs boson, JHEP 03 (2007) 036 [hep-ph/0701035] [INSPIRE].

    ADS  Google Scholar 

  75. S. Gopalakrishna, S. Jung and J.D. Wells, Higgs boson decays to four fermions through an abelian hidden sector, Phys. Rev. D 78 (2008) 055002 [arXiv:0801.3456] [INSPIRE].

    ADS  Google Scholar 

  76. C. Englert, T. Plehn, D. Zerwas and P.M. Zerwas, Exploring the Higgs portal, Phys. Lett. B 703 (2011)298 [arXiv:1106.3097] [INSPIRE].

    ADS  Google Scholar 

  77. C. Englert, T. Plehn, M. Rauch, D. Zerwas and P.M. Zerwas, LHC: standard Higgs and hidden Higgs, Phys. Lett. B 707 (2012) 512 [arXiv:1112.3007] [INSPIRE].

    ADS  Google Scholar 

  78. J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703] [INSPIRE].

    ADS  Google Scholar 

  79. F. Gursey, P. Ramond and P. Sikivie, A universal gauge theory model based on E 6, Phys. Lett. B 60 (1976) 177 [INSPIRE].

    ADS  Google Scholar 

  80. Y. Achiman and B. Stech, Quark lepton symmetry and mass scales in an E 6 unified gauge model, Phys. Lett. B 77 (1978) 389 [INSPIRE].

    ADS  Google Scholar 

  81. Q. Shafi, E 6 as a unifying gauge symmetry, Phys. Lett. B 79 (1978) 301 [INSPIRE].

    ADS  Google Scholar 

  82. R. Barbieri, D.V. Nanopoulos and A. Masiero, Hierarchical fermion masses in E 6, Phys. Lett. B 104 (1981) 194 [INSPIRE].

    ADS  Google Scholar 

  83. H. Georgi, The state of the artGauge theories, AIP Conf. Proc. 23 (1975) 575 [INSPIRE].

    ADS  Google Scholar 

  84. H. Fritzsch and P. Minkowski, Unified interactions of leptons and hadrons, Annals Phys. 93 (1975)193 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  85. Y. Achiman and B. Stech, Topless model for grand unification, in Advanced summer institute on new phenomena in lepton and hadron physics, D.E.C. Fries and J. Wess eds., Plenum, New York U.S.A. (1979).

  86. S.L. Glashow, Trinification of all elementary particle forces, in Fifth workshop on grand unification, K. Kang et al. eds., World Scientific, Singapore (1984).

  87. K. Babu, X.-G. He and S. Pakvasa, Neutrino masses and proton decay modes in SU(3) × SU(3) × SU(3) trinification, Phys. Rev. D 33 (1986) 763 [INSPIRE].

    ADS  Google Scholar 

  88. B. Stech, The mass of the Higgs boson in the trinification subgroup of E6, Phys. Rev. D 86 (2012)055003 [arXiv:1206.4233] [INSPIRE].

    ADS  Google Scholar 

  89. B. Stech and Z. Tavartkiladze, Generation symmetry and E 6 unification, Phys. Rev. D 77 (2008)076009 [arXiv:0802.0894] [INSPIRE].

    ADS  Google Scholar 

  90. B. Stech, Neutrino properties from E 6 × SO(3) × Z 2, Fortsch. Phys. 58 (2010) 692 [arXiv:1003.0581] [INSPIRE].

    ADS  Google Scholar 

  91. B. Stech, Degenerate states in the scalar boson spectrum. Is the Higgs boson a twin?, arXiv:1303.6931 [INSPIRE].

  92. R. Killick, K. Kumar and H.E. Logan, Learning what the Higgs boson is mixed with, Phys. Rev. D 88 (2013) 033015 [arXiv:1305.7236] [INSPIRE].

    ADS  Google Scholar 

  93. P. Langacker, Grand unified theories and proton decay, Phys. Rept. 72 (1981) 185 [INSPIRE].

    ADS  Google Scholar 

  94. V. Barger, H.E. Logan and G. Shaughnessy, Identifying extended Higgs models at the LHC, Phys. Rev. D 79 (2009) 115018 [arXiv:0902.0170] [INSPIRE].

    ADS  Google Scholar 

  95. S. Kanemura, M. Kikuchi and K. Yagyu, Probing exotic Higgs sectors from the precise measurement of Higgs boson couplings, Phys. Rev. D 88 (2013) 015020 [arXiv:1301.7303] [INSPIRE].

    ADS  Google Scholar 

  96. H. Georgi and M. Machacek, Doubly charged Higgs bosons, Nucl. Phys. B 262 (1985) 463 [INSPIRE].

    ADS  Google Scholar 

  97. M.S. Chanowitz and M. Golden, Higgs boson triplets with M (W ) = M (Z) cos θω, Phys. Lett. B 165 (1985) 105 [INSPIRE].

    ADS  Google Scholar 

  98. J. Gunion, R. Vega and J. Wudka, Higgs triplets in the standard model, Phys. Rev. D 42 (1990)1673 [INSPIRE].

    ADS  Google Scholar 

  99. J. Gunion, R. Vega and J. Wudka, Naturalness problems for ρ = 1 and other large one loop effects for a standard model Higgs sector containing triplet fields, Phys. Rev. D 43 (1991) 2322 [INSPIRE].

    ADS  Google Scholar 

  100. M. Aoki and S. Kanemura, Unitarity bounds in the Higgs model including triplet fields with custodial symmetry, Phys. Rev. D 77 (2008) 095009 [arXiv:0712.4053] [INSPIRE].

    ADS  Google Scholar 

  101. H.E. Logan and M.-A. Roy, Higgs couplings in a model with triplets, Phys. Rev. D 82 (2010)115011 [arXiv:1008.4869] [INSPIRE].

    ADS  Google Scholar 

  102. C. Englert, E. Re and M. Spannowsky, Triplet Higgs boson collider phenomenology after the LHC, Phys. Rev. D 87 (2013) 095014 [arXiv:1302.6505] [INSPIRE].

    ADS  Google Scholar 

  103. J. Hisano and K. Tsumura, Higgs boson mixes with an SU(2) septet representation, Phys. Rev. D 87 (2013) 053004 [arXiv:1301.6455] [INSPIRE].

    ADS  Google Scholar 

  104. S. Choi, S. Jung and P. Ko, Implications of LHC data on 125 GeV Higgs-like boson for the standard model and its various extensions, arXiv:1307.3948 [INSPIRE].

  105. V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  106. M.J.G. Veltman and F. Ynduráin, Radiative corrections to W W scattering, Nucl. Phys. B 325 (1989)1 [INSPIRE].

    ADS  Google Scholar 

  107. H. Davoudiasl, R. Kitano, T. Li and H. Murayama, The new minimal standard model, Phys. Lett. B 609 (2005) 117 [hep-ph/0405097] [INSPIRE].

    ADS  Google Scholar 

  108. O. Bahat-Treidel, Y. Grossman and Y. Rozen, Hiding the Higgs at the LHC, JHEP 05 (2007)022 [hep-ph/0611162] [INSPIRE].

    ADS  Google Scholar 

  109. D. O’Connell, M.J. Ramsey-Musolf and M.B. Wise, Minimal extension of the standard model scalar sector, Phys. Rev. D 75 (2007) 037701 [hep-ph/0611014] [INSPIRE].

    ADS  Google Scholar 

  110. V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf and G. Shaughnessy, LHC phenomenology of an extended standard model with a real scalar singlet, Phys. Rev. D 77 (2008)035005 [arXiv:0706.4311] [INSPIRE].

    ADS  Google Scholar 

  111. M. Gonderinger, Y. Li, H. Patel and M.J. Ramsey-Musolf, Vacuum stability, perturbativity and scalar singlet dark matter, JHEP 01 (2010) 053 [arXiv:0910.3167] [INSPIRE].

    ADS  Google Scholar 

  112. P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, Missing energy signatures of dark matter at the LHC, Phys. Rev. D 85 (2012) 056011 [arXiv:1109.4398] [INSPIRE].

    ADS  Google Scholar 

  113. E. Weihs and J. Zurita, Dark Higgs models at the 7 TeV LHC, JHEP 02 (2012) 041 [arXiv:1110.5909] [INSPIRE].

    ADS  Google Scholar 

  114. G.M. Pruna and T. Robens, The Higgs Singlet extension parameter space in the light of the LHC discovery, arXiv:1303.1150 [INSPIRE].

  115. S.K. Kang and J. Park, Unitarity constraints in the standard model with a singlet scalar field, arXiv:1306.6713 [INSPIRE].

  116. X.-G. He and J. Tandean, Hidden Higgs boson at the LHC and light dark matter searches, Phys. Rev. D 84 (2011) 075018 [arXiv:1109.1277] [INSPIRE].

    ADS  Google Scholar 

  117. A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].

    ADS  Google Scholar 

  118. ATLAS collaboration, Search for invisible decays of a Higgs boson produced in association with a Z boson in ATLAS, ATLAS-CONF-2013-011 (2013).

  119. CMS collaboration, Search for invisible Higgs produced in association with a Z boson, CMS-PAS-HIG-13-018 (2013).

  120. G. Bélanger, B. Dumont, U. Ellwanger, J.F. Gunion and S. Kraml, Status of invisible Higgs decays, Phys. Lett. B 723 (2013) 340 [arXiv:1302.5694] [INSPIRE].

    ADS  Google Scholar 

  121. WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].

    ADS  Google Scholar 

  122. XENON100 collaboration, E. Aprile et al., Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].

    ADS  Google Scholar 

  123. Fermi-LAT collaboration, M. Ackermann et al., Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi Large Area Telescope, Phys. Rev. Lett. 107 (2011) 241302 [arXiv:1108.3546] [INSPIRE].

    ADS  Google Scholar 

  124. K. Cheung, Y.-L.S. Tsai, P.-Y. Tseng, T.-C. Yuan and A. Zee, global study of the simplest scalar phantom dark matter model, JCAP 10 (2012) 042 [arXiv:1207.4930] [INSPIRE].

    ADS  Google Scholar 

  125. J.M. Cline, K. Kainulainen, P. Scott and C. Weniger, Update on scalar singlet dark matter, Phys. Rev. D 88 (2013) 055025 [arXiv:1306.4710] [INSPIRE].

    ADS  Google Scholar 

  126. B. Batell, D. McKeen and M. Pospelov, Singlet neighbors of the Higgs boson, JHEP 10 (2012)104 [arXiv:1207.6252] [INSPIRE].

    ADS  Google Scholar 

  127. A. Drozd, B. Grzadkowski and J. Wudka, Multi-scalar-singlet extension of the standard modelThe case for dark matter and an invisible Higgs boson, JHEP 04 (2012) 006 [arXiv:1112.2582] [INSPIRE].

    ADS  Google Scholar 

  128. J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunters guide, Addison-Wesley, Menlo-Park U.S.A. (1990).

    Google Scholar 

  129. G. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012)1 [arXiv:1106.0034] [INSPIRE].

    ADS  Google Scholar 

  130. M.S. Carena and H.E. Haber, Higgs boson theory and phenomenology, Prog. Part. Nucl. Phys. 50 (2003) 63 [hep-ph/0208209] [INSPIRE].

    ADS  Google Scholar 

  131. A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].

    ADS  Google Scholar 

  132. D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136 (1984)187 [INSPIRE].

    ADS  Google Scholar 

  133. K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].

    ADS  Google Scholar 

  134. G. Burdman and C.E. Haluch, Two Higgs doublets from fermion condensation, JHEP 12 (2011)038 [arXiv:1109.3914] [INSPIRE].

    ADS  Google Scholar 

  135. M. Schmaltz and D. Tucker-Smith, Little Higgs review, Ann. Rev. Nucl. Part. Sci. 55 (2005)229 [hep-ph/0502182] [INSPIRE].

    ADS  Google Scholar 

  136. M. Perelstein, Little Higgs models and their phenomenology, Prog. Part. Nucl. Phys. 58 (2007)247 [hep-ph/0512128] [INSPIRE].

    ADS  Google Scholar 

  137. J.F. Gunion and H.E. Haber, Conditions for CP-violation in the general two-Higgs-doublet model, Phys. Rev. D 72 (2005) 095002 [hep-ph/0506227] [INSPIRE].

    ADS  Google Scholar 

  138. P. Ferreira, H.E. Haber, M. Maniatis, O. Nachtmann and J.P. Silva, Geometric picture of generalized-CP and Higgs-family transformations in the two-Higgs-doublet model, Int. J. Mod. Phys. A 26 (2011) 769 [arXiv:1010.0935] [INSPIRE].

    ADS  Google Scholar 

  139. E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].

    ADS  Google Scholar 

  140. S. Kanemura, Y. Okada and E. Senaha, Electroweak baryogenesis and quantum corrections to the triple Higgs boson coupling, Phys. Lett. B 606 (2005) 361 [hep-ph/0411354] [INSPIRE].

    ADS  Google Scholar 

  141. J.M. Cline, K. Kainulainen and M. Trott, Electroweak baryogenesis in two Higgs doublet models and B meson anomalies, JHEP 11 (2011) 089 [arXiv:1107.3559] [INSPIRE].

    ADS  Google Scholar 

  142. A. Tranberg and B. Wu, Cold electroweak baryogenesis in the two Higgs-doublet model, JHEP 07 (2012) 087 [arXiv:1203.5012] [INSPIRE].

    ADS  Google Scholar 

  143. G. Dorsch, S. Huber and J. No, A strong electroweak phase transition in the 2HDM after LHC8, JHEP 10 (2013) 029 [arXiv:1305.6610] [INSPIRE].

    ADS  Google Scholar 

  144. C. Cheung and Y. Zhang, Electroweak cogenesis, JHEP 09 (2013) 002 [arXiv:1306.4321] [INSPIRE].

    ADS  Google Scholar 

  145. J.-O. Gong, H.M. Lee and S.K. Kang, Inflation and dark matter in two Higgs doublet models, JHEP 04 (2012) 128 [arXiv:1202.0288] [INSPIRE].

    ADS  Google Scholar 

  146. M. Aoki et al., Light charged Higgs bosons at the LHC in 2HDMs, Phys. Rev. D 84 (2011) 055028 [arXiv:1104.3178] [INSPIRE].

    ADS  Google Scholar 

  147. S. Chang, J.A. Evans and M.A. Luty, Possibility of early Higgs boson discovery in nonminimal Higgs sectors, Phys. Rev. D 84 (2011) 095030 [arXiv:1107.2398] [INSPIRE].

    ADS  Google Scholar 

  148. A. Arhrib, C.-W. Chiang, D.K. Ghosh and R. Santos, Two Higgs doublet model in light of the standard model Hτ + τ search at the LHC, Phys. Rev. D 85 (2012) 115003 [arXiv:1112.5527] [INSPIRE].

    ADS  Google Scholar 

  149. S. Kanemura, K. Tsumura and H. Yokoya, Multi-tau-lepton signatures at the LHC in the two Higgs doublet model, Phys. Rev. D 85 (2012) 095001 [arXiv:1111.6089] [INSPIRE].

    ADS  Google Scholar 

  150. W. Mader, J.-h. Park, G.M. Pruna, D. Stöckinger and A. Straessner, LHC explores what LEP hinted at: CP-violating type-I 2HDM, JHEP 09 (2012) 125 [arXiv:1205.2692] [INSPIRE].

    ADS  Google Scholar 

  151. K. Tsumura, Two Higgs doublet models at future colliders, arXiv:1305.1754 [INSPIRE].

  152. R.V. Harlander, S. Liebler and T. Zirke, Higgs strahlung at the Large Hadron Collider in the 2-Higgs-doublet model, arXiv:1307.8122 [INSPIRE].

  153. P. Ferreira, R. Santos, M. Sher and J.P. Silva, Implications of the LHC two-photon signal for two-Higgs-doublet models, Phys. Rev. D 85 (2012) 077703 [arXiv:1112.3277] [INSPIRE].

    ADS  Google Scholar 

  154. P. Ferreira, R. Santos, M. Sher and J.P. Silva, Could the LHC two-photon signal correspond to the heavier scalar in two-Higgs-doublet models?, Phys. Rev. D 85 (2012) 035020 [arXiv:1201.0019] [INSPIRE].

    ADS  Google Scholar 

  155. J. Chang, K. Cheung, P.-Y. Tseng and T.-C. Yuan, Implications on the heavy CP-even Higgs boson from current Higgs data, Phys. Rev. D 87 (2013), no. 3 035008 [arXiv:1211.3849] [INSPIRE].

  156. A. Drozd, B. Grzadkowski, J.F. Gunion and Y. Jiang, Two-Higgs-doublet models and enhanced rates for a 125 GeV Higgs, JHEP 05 (2013) 072 [arXiv:1211.3580] [INSPIRE].

    ADS  Google Scholar 

  157. S. Chang et al., Comprehensive study of two Higgs doublet model in light of the new boson with mass around 125 GeV, JHEP 05 (2013) 075 [arXiv:1210.3439] [INSPIRE].

    ADS  Google Scholar 

  158. G. Burdman, C.E.F. Haluch and R.D. Matheus, Is the LHC observing the pseudo-scalar state of a two-Higgs doublet model?, Phys. Rev. D 85 (2012) 095016 [arXiv:1112.3961] [INSPIRE].

    ADS  Google Scholar 

  159. A. Azatov, S. Chang, N. Craig and J. Galloway, Higgs fits preference for suppressed down-type couplings: Implications for supersymmetry, Phys. Rev. D 86 (2012) 075033 [arXiv:1206.1058] [INSPIRE].

    ADS  Google Scholar 

  160. D.S. Alves, P.J. Fox and N.J. Weiner, Higgs signals in a type I 2HDM or with a sister Higgs, arXiv:1207.5499 [INSPIRE].

  161. H. Cheon and S.K. Kang, Constraining parameter space in type-II two-Higgs doublet model in light of a 126 GeV Higgs boson, JHEP 09 (2013) 085 [arXiv:1207.1083] [INSPIRE].

    ADS  Google Scholar 

  162. C.-W. Chiang and K. Yagyu, Implications of Higgs boson search data on the two-Higgs doublet models with a softly broken Z 2 symmetry, JHEP 07 (2013) 160 [arXiv:1303.0168] [INSPIRE].

    ADS  Google Scholar 

  163. B. Grinstein and P. Uttayarat, Carving out parameter space in type-II two Higgs doublets model, JHEP 06 (2013) 094 [Erratum ibid. 1309 (2013) 110] [arXiv:1304.0028] [INSPIRE].

    ADS  Google Scholar 

  164. M. Krawczyk, D. Sokolowska and B. Swieżewska, 2HDM with Z 2 symmetry in light of new LHC data, J. Phys. Conf. Ser. 447 (2013) 012050 [arXiv:1303.7102] [INSPIRE].

    ADS  Google Scholar 

  165. A. Barroso, P. Ferreira, R. Santos, M. Sher and J.P. Silva, 2HDM at the LHCThe story so far, arXiv:1304.5225 [INSPIRE].

  166. B. Coleppa, F. Kling and S. Su, Constraining type II 2HDM in light of LHC Higgs searches, arXiv:1305.0002 [INSPIRE].

  167. C.-Y. Chen, S. Dawson and M. Sher, Heavy Higgs searches and constraints on two Higgs doublet models, Phys. Rev. D 88 (2013) 015018 [arXiv:1305.1624] [INSPIRE].

    ADS  Google Scholar 

  168. O. Eberhardt, U. Nierste and M. Wiebusch, Status of the two-Higgs-doublet model of type-II, arXiv:1305.1649 [INSPIRE].

  169. C.-Y. Chen and S. Dawson, Exploring two Higgs doublet models through Higgs production, Phys. Rev. D 87 (2013) 055016 [arXiv:1301.0309] [INSPIRE].

    ADS  Google Scholar 

  170. N. Craig, J. Galloway and S. Thomas, Searching for signs of the second Higgs doublet, arXiv:1305.2424 [INSPIRE].

  171. G. Bélanger, B. Dumont, U. Ellwanger, J.F. Gunion and S. Kraml, Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors, arXiv:1306.2941 [INSPIRE].

  172. Y. Bai, V. Barger, L.L. Everett and G. Shaughnessy, The 2HDM-X and Large Hadron Collider data, Phys. Rev. D 87 (2013) 115013 [arXiv:1210.4922] [INSPIRE].

    ADS  Google Scholar 

  173. V. Barger, L.L. Everett, H.E. Logan and G. Shaughnessy, Scrutinizing h(125) in two Higgs doublet models at the LHC, ILC and Muon Collider, arXiv:1308.0052 [INSPIRE].

  174. A. Celis, V. Ilisie and A. Pich, LHC constraints on two-Higgs doublet models, JHEP 07 (2013)053 [arXiv:1302.4022] [INSPIRE].

    ADS  Google Scholar 

  175. W. Altmannshofer, S. Gori and G.D. Kribs, A minimal flavor violating 2HDM at the LHC, Phys. Rev. D 86 (2012) 115009 [arXiv:1210.2465] [INSPIRE].

    ADS  Google Scholar 

  176. N.G. Deshpande and E. Ma, Pattern of symmetry breaking with two Higgs doublets, Phys. Rev. D 18 (1978) 2574 [INSPIRE].

    ADS  Google Scholar 

  177. R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: an alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].

    ADS  Google Scholar 

  178. D. Majumdar and A. Ghosal, Dark matter candidate in a heavy Higgs modelDirect detection rates, Mod. Phys. Lett. A 23 (2008) 2011 [hep-ph/0607067] [INSPIRE].

    ADS  Google Scholar 

  179. L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H. Tytgat, The inert doublet model: an archetype for dark matter, JCAP 02 (2007) 028 [hep-ph/0612275] [INSPIRE].

    ADS  Google Scholar 

  180. M. Gustafsson, E. Lundstrom, L. Bergstrom and J. Edsjo, Significant gamma lines from inert Higgs dark matter, Phys. Rev. Lett. 99 (2007) 041301 [astro-ph/0703512] [INSPIRE].

    ADS  Google Scholar 

  181. P. Agrawal, E.M. Dolle and C.A. Krenke, Signals of inert doublet dark matter in neutrino telescopes, Phys. Rev. D 79 (2009) 015015 [arXiv:0811.1798] [INSPIRE].

    ADS  Google Scholar 

  182. E. Nezri, M.H. Tytgat and G. Vertongen, e + and \( \overline{p} \) from inert doublet model dark matter, JCAP 04 (2009) 014 [arXiv:0901.2556] [INSPIRE].

    ADS  Google Scholar 

  183. E.M. Dolle and S. Su, The inert dark matter, Phys. Rev. D 80 (2009) 055012 [arXiv:0906.1609] [INSPIRE].

    ADS  Google Scholar 

  184. C. Arina, F.-S. Ling and M.H. Tytgat, IDM and iDM or the inert doublet model and inelastic dark matter, JCAP 10 (2009) 018 [arXiv:0907.0430] [INSPIRE].

    ADS  Google Scholar 

  185. A. Goudelis, B. Herrmann and O. Stal, Dark matter in the inert doublet model after the discovery of a Higgs-like boson at the LHC, JHEP 09 (2013) 106 [arXiv:1303.3010] [INSPIRE].

    ADS  Google Scholar 

  186. A. Wahab El Kaffas, P. Osland and O.M. Ogreid, Constraining the two-Higgs-doublet-model parameter space, Phys. Rev. D 76 (2007) 095001 [arXiv:0706.2997] [INSPIRE].

    ADS  Google Scholar 

  187. S. Su and B. Thomas, The LHC discovery potential of a leptophilic Higgs, Phys. Rev. D 79 (2009)095014 [arXiv:0903.0667] [INSPIRE].

    ADS  Google Scholar 

  188. M. Aoki, S. Kanemura, K. Tsumura and K. Yagyu, Models of Yukawa interaction in the two Higgs doublet model and their collider phenomenology, Phys. Rev. D 80 (2009) 015017 [arXiv:0902.4665] [INSPIRE].

    ADS  Google Scholar 

  189. S. Kanemura, Y. Okada, H. Taniguchi and K. Tsumura, Indirect bounds on heavy scalar masses of the two-Higgs-doublet model in light of recent Higgs boson searches, Phys. Lett. B 704 (2011)303 [arXiv:1108.3297] [INSPIRE].

    ADS  Google Scholar 

  190. F. Mahmoudi and T. Hurth, Flavour data constraints on new physics and SuperIso, PoS(ICHEP2012)324 [arXiv:1211.2796] [INSPIRE].

  191. H. Neufeld, W. Grimus and G. Ecker, Generalized CP invariance, neutral flavor conservation and the structure of the mixing matrix, Int. J. Mod. Phys. A 3 (1988) 603 [INSPIRE].

    ADS  Google Scholar 

  192. I. Ivanov, Minkowski space structure of the Higgs potential in 2HDM, Phys. Rev. D 75 (2007)035001 [Erratum ibid. D 76 (2007) 039902] [hep-ph/0609018] [INSPIRE].

    ADS  Google Scholar 

  193. P.M. Ferreira, H.E. Haber and J.P. Silva, Generalized CP symmetries and special regions of parameter space in the two-Higgs-doublet model, Phys. Rev. D 79 (2009) 116004 [arXiv:0902.1537] [INSPIRE].

    ADS  Google Scholar 

  194. M.J.G. Veltman, Second threshold in weak interactions, Acta Phys. Polon. B 8 (1977) 475 [INSPIRE].

    Google Scholar 

  195. E. Cerveró and J.-M. Gérard, Minimal violation of flavour and custodial symmetries in a vectophobic two-Higgs-doublet-model, Phys. Lett. B 712 (2012) 255 [arXiv:1202.1973] [INSPIRE].

    ADS  Google Scholar 

  196. M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].

    ADS  Google Scholar 

  197. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992)381 [INSPIRE].

    ADS  Google Scholar 

  198. D. Toussaint, Renormalization effects from superheavy Higgs particles, Phys. Rev. D 18 (1978)1626 [INSPIRE].

    ADS  Google Scholar 

  199. J. Frère and J.A.M. Vermaseren, Radiative corrections to masses in the standard model with two scalar doublets, Z. Phys. C 19 (1983) 63 [INSPIRE].

    ADS  Google Scholar 

  200. S. Bertolini, Quantum effects in a two Higgs doublet model of the electroweak interactions, Nucl. Phys. B 272 (1986) 77 [INSPIRE].

    ADS  Google Scholar 

  201. W. Grimus, L. Lavoura, O. Ogreid and P. Osland, A precision constraint on multi-Higgs-doublet models, J. Phys. G 35 (2008) 075001 [arXiv:0711.4022] [INSPIRE].

    ADS  Google Scholar 

  202. W. Hollik, Nonstandard Higgs bosons in SU(2) × U(1) radiative corrections, Z. Phys. C 32 (1986) 291 [INSPIRE].

    ADS  Google Scholar 

  203. W. Hollik, Radiative corrections with two Higgs doublets at LEP/SLC and HERA, Z. Phys. C 37 (1988) 569 [INSPIRE].

    ADS  Google Scholar 

  204. C. Froggatt, R. Moorhouse and I. Knowles, Leading radiative corrections in two scalar doublet models, Phys. Rev. D 45 (1992) 2471 [INSPIRE].

    ADS  Google Scholar 

  205. H.-J. He, N. Polonsky and S.-f. Su, Extra families, Higgs spectrum and oblique corrections, Phys. Rev. D 64 (2001) 053004 [hep-ph/0102144] [INSPIRE].

    ADS  Google Scholar 

  206. W. Grimus, L. Lavoura, O. Ogreid and P. Osland, The oblique parameters in multi-Higgs-doublet models, Nucl. Phys. B 801 (2008) 81 [arXiv:0802.4353] [INSPIRE].

    ADS  Google Scholar 

  207. ALEPH, CDF, D0, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, Tevatron Electroweak Working Group, SLD Electroweak and Heavy Flavour Groups, Precision electroweak measurements and constraints on the standard model, arXiv:1012.2367 [INSPIRE].

  208. M. Baak et al., Updated status of the global electroweak fit and constraints on new physics, Eur. Phys. J. C 72 (2012) 2003 [arXiv:1107.0975] [INSPIRE].

    ADS  Google Scholar 

  209. Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  210. LEP Electroweak Working Group, http://lepewwg.web.cern.ch/LEPEWWG/.

  211. S.L. Glashow and S. Weinberg, Natural conservation laws for neutral currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE].

    ADS  Google Scholar 

  212. G. D’Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].

    ADS  Google Scholar 

  213. A. Dery, A. Efrati, G. Hiller, Y. Hochberg and Y. Nir, Higgs couplings to fermions: 2HDM with MFV, JHEP 08 (2013) 006 [arXiv:1304.6727] [INSPIRE].

    ADS  Google Scholar 

  214. A. Pich and P. Tuzón, Yukawa alignment in the two-Higgs-doublet model, Phys. Rev. D 80 (2009)091702 [arXiv:0908.1554] [INSPIRE].

    ADS  Google Scholar 

  215. S. Davidson and H.E. Haber, Basis-independent methods for the two-Higgs-doublet model, Phys. Rev. D 72 (2005) 035004 [Erratum ibid. D 72 (2005) 099902] [hep-ph/0504050] [INSPIRE].

    ADS  Google Scholar 

  216. BaBar collaboration, B. Aubert et al., Measurement of the BX(sbranching fraction and photon energy spectrum using the recoil method, Phys. Rev. D 77 (2008) 051103 [arXiv:0711.4889] [INSPIRE].

    ADS  Google Scholar 

  217. Heavy Flavor Averaging Group collaboration, E. Barberio et al., Averages of b-hadron and c-hadron properties at the end of 2007, arXiv:0808.1297 [INSPIRE].

  218. J.P. Leveille, The second order weak correction to (g − 2) of the muon in arbitrary gauge models, Nucl. Phys. B 137 (1978) 63 [INSPIRE].

    ADS  Google Scholar 

  219. H. Haber, G.L. Kane and T. Sterling, The fermion mass scale and possible effects of Higgs bosons on experimental observables, Nucl. Phys. B 161 (1979) 493 [INSPIRE].

    ADS  Google Scholar 

  220. S.M. Barr and A. Zee, Electric dipole moment of the electron and of the neutron, Phys. Rev. Lett. 65 (1990) 21 [Erratum ibid. 65 (1990) 2920] [INSPIRE].

    ADS  Google Scholar 

  221. M. Krawczyk and J. Zochowski, Constraining 2HDM by present and future muon (g − 2) data, Phys. Rev. D 55 (1997) 6968 [hep-ph/9608321] [INSPIRE].

    ADS  Google Scholar 

  222. A. Dedes and H.E. Haber, Can the Higgs sector contribute significantly to the muon anomalous magnetic moment?, JHEP 05 (2001) 006 [hep-ph/0102297] [INSPIRE].

    ADS  Google Scholar 

  223. D. Chang, W.-F. Chang, C.-H. Chou and W.-Y. Keung, Large two loop contributions to g−2 from a generic pseudoscalar boson, Phys. Rev. D 63(2001)091301[hep-ph/0009292] [INSPIRE].

    ADS  Google Scholar 

  224. K. Cheung and O.C. Kong, Can the two Higgs doublet model survive the constraint from the muon anomalous magnetic moment as suggested?, Phys. Rev. D 68 (2003) 053003 [hep-ph/0302111] [INSPIRE].

    ADS  Google Scholar 

  225. ALEPH, DELPHI, L3, OPAL, LEP Working Group for Higgs Boson Searches, S. Schael et al., Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J. C 47 (2006) 547 [hep-ex/0602042] [INSPIRE].

    ADS  Google Scholar 

  226. D0 collaboration, V. Abazov et al., Direct search for charged Higgs bosons in decays of top quarks, Phys. Rev. Lett. 88 (2002) 151803 [hep-ex/0102039] [INSPIRE].

    ADS  Google Scholar 

  227. CDF collaboration, A. Abulencia et al., Search for charged Higgs bosons from top quark decays in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 96 (2006) 042003 [hep-ex/0510065] [INSPIRE].

    ADS  Google Scholar 

  228. CMS collaboration, Search for a light charged Higgs boson in top quark decays in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 07 (2012) 143 [arXiv:1205.5736] [INSPIRE].

    ADS  Google Scholar 

  229. ATLAS collaboration, Search for charged Higgs bosons decaying via H +τ ν in top quark pair events using pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 06 (2012)039 [arXiv:1204.2760] [INSPIRE].

    ADS  Google Scholar 

  230. CMS collaboration, Higgs to tau tau (MSSM) (HCP), CMS-PAS-HIG-12-050 (2012).

  231. ATLAS collaboration, Search for neutral MSSM Higgs bosons in sqrts = 7 TeV pp collisions at ATLAS, ATLAS-CONF-2012-094 (2012).

  232. D. Eriksson, J. Rathsman and O. Stål, 2HDMC: two-Higgs-doublet model calculator physics and manual, Comput. Phys. Commun. 181 (2010) 189 [arXiv:0902.0851] [INSPIRE].

    ADS  MATH  Google Scholar 

  233. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds: confronting arbitrary Higgs sectors with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138 [arXiv:0811.4169] [INSPIRE].

    ADS  MATH  Google Scholar 

  234. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds 2.0.0: confronting neutral and charged Higgs sector predictions with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 182 (2011) 2605 [arXiv:1102.1898] [INSPIRE].

    ADS  Google Scholar 

  235. F. Mahmoudi, SuperIso: a program for calculating the isospin asymmetry of BK γ in the MSSM, Comput. Phys. Commun. 178 (2008) 745 [arXiv:0710.2067] [INSPIRE].

    ADS  MATH  Google Scholar 

  236. F. Mahmoudi, SuperIso v2.3: a program for calculating flavor physics observables in supersymmetry, Comput. Phys. Commun. 180 (2009) 1579 [arXiv:0808.3144] [INSPIRE].

    ADS  Google Scholar 

  237. M. Maniatis, The Next-to-minimal supersymmetric extension of the standard model reviewed, Int. J. Mod. Phys. A 25 (2010) 3505 [arXiv:0906.0777] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  238. U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  239. R. Mohapatra and J.C. Pati, A natural left-right symmetry, Phys. Rev. D 11 (1975) 2558 [INSPIRE].

    ADS  Google Scholar 

  240. G. Senjanović and R.N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].

    ADS  Google Scholar 

  241. Z. Kang, Y. Liu and G.-Z. Ning, Highlights of supersymmetric hypercharge ±1 triplets, JHEP 09 (2013) 091 [arXiv:1301.2204] [INSPIRE].

    ADS  Google Scholar 

  242. A. Delgado, G. Nardini and M. Quirós, A light supersymmetric Higgs sector hidden by a standard model-like Higgs, JHEP 07 (2013) 054 [arXiv:1303.0800] [INSPIRE].

    ADS  Google Scholar 

  243. M. Aoki, S. Kanemura, M. Kikuchi and K. Yagyu, Radiative corrections to the Higgs boson couplings in the triplet model, Phys. Rev. D 87 (2013) 015012 [arXiv:1211.6029] [INSPIRE].

    ADS  Google Scholar 

  244. B. Stech, Flavor symmetry and grand unification, arXiv:1012.6028 [INSPIRE].

  245. M. Heikinheimo, A. Racioppi, M. Raidal and C. Spethmann, Twin peak Higgs, arXiv:1307.7146 [INSPIRE].

  246. J.F. Gunion, Y. Jiang and S. Kraml, Diagnosing degenerate Higgs bosons at 125 GeV, Phys. Rev. Lett. 110 (2013) 051801 [arXiv:1208.1817] [INSPIRE].

    ADS  Google Scholar 

  247. P. Ferreira, R. Santos, H.E. Haber and J.P. Silva, Mass-degenerate Higgs bosons at 125 GeV in the two-Higgs-doublet model, Phys. Rev. D 87 (2013) 055009 [arXiv:1211.3131] [INSPIRE].

    ADS  Google Scholar 

  248. J.F. Gunion, Y. Jiang and S. Kraml, Could two NMSSM Higgs bosons be present near 125 GeV?, Phys. Rev. D 86 (2012) 071702 [arXiv:1207.1545] [INSPIRE].

    ADS  Google Scholar 

  249. Y. Grossman, Z. Surujon and J. Zupan, How to test for mass degenerate Higgs resonances, JHEP 03 (2013) 176 [arXiv:1301.0328] [INSPIRE].

    ADS  Google Scholar 

  250. H. Huffel and G. Pocsik, Unitarity bounds on Higgs boson masses in the Weinberg-Salam model with two Higgs doublets, Z. Phys. C 8 (1981) 13 [INSPIRE].

    ADS  Google Scholar 

  251. R.A. Flores and M. Sher, Higgs masses in the standard, multi-Higgs and supersymmetric models, Annals Phys. 148 (1983) 95 [INSPIRE].

    ADS  Google Scholar 

  252. A. Bovier and D. Wyler, Upper bounds on the Higgs masses in multiscalar theories from consistency requirements, Phys. Lett. B 154 (1985) 43 [INSPIRE].

    ADS  Google Scholar 

  253. J. Maalampi, J. Sirkka and I. Vilja, Tree level unitarity and triviality bounds for two Higgs models, Phys. Lett. B 265 (1991) 371 [INSPIRE].

    ADS  Google Scholar 

  254. D. Kominis and R.S. Chivukula, Triviality bounds in two doublet models, Phys. Lett. B 304 (1993)152 [hep-ph/9301222] [INSPIRE].

    ADS  Google Scholar 

  255. K.S. Babu and E. Ma, Bounds on Higgs boson masses in a two doublet extension of the standard model, Phys. Rev. D 31 (1985) 2861 [Erratum ibid. D 33 (1986) 3471] [INSPIRE].

    ADS  Google Scholar 

  256. A. Davies and G.C. Joshi, Momentum scale dependent bounds on masses in two models with more than one Higgs multiplet, Phys. Rev. Lett. 58 (1987) 1919 [INSPIRE].

    ADS  Google Scholar 

  257. B.M. Kastening, Bounds from stability and symmetry breaking on parameters in the two Higgs doublet potential, hep-ph/9307224 [INSPIRE].

  258. J. Velhinho, R. Santos and A. Barroso, Tree level vacuum stability in two Higgs doublet models, Phys. Lett. B 322 (1994) 213 [INSPIRE].

    ADS  Google Scholar 

  259. S. Nie and M. Sher, Vacuum stability bounds in the two Higgs doublet model, Phys. Lett. B 449 (1999)89 [hep-ph/9811234] [INSPIRE].

    ADS  Google Scholar 

  260. P. Ferreira, R. Santos and A. Barroso, Stability of the tree-level vacuum in two Higgs doublet models against charge or CP spontaneous violation, Phys. Lett. B 603 (2004) 219 [Erratum ibid. B 629 (2005) 114] [hep-ph/0406231] [INSPIRE].

    ADS  Google Scholar 

  261. M. Maniatis, A. von Manteuffel, O. Nachtmann and F. Nagel, Stability and symmetry breaking in the general two-Higgs-doublet model, Eur. Phys. J. C 48 (2006) 805 [hep-ph/0605184] [INSPIRE].

    ADS  Google Scholar 

  262. P.M. Ferreira and D.R.T. Jones, Bounds on scalar masses in two Higgs doublet models, JHEP 08 (2009) 069 [arXiv:0903.2856] [INSPIRE].

    ADS  Google Scholar 

  263. M. Lindner, Implications of triviality for the standard model, Z. Phys. C 31 (1986) 295 [INSPIRE].

    ADS  Google Scholar 

  264. M. Sher, Electroweak Higgs potentials and vacuum stability, Phys. Rept. 179 (1989) 273 [INSPIRE].

    ADS  Google Scholar 

  265. G. Kreyerhoff and R. Rodenberg, Renormalization group analysis of Coleman-Weinberg symmetry breaking in two Higgs models, Phys. Lett. B 226 (1989) 323 [INSPIRE].

    ADS  Google Scholar 

  266. J. Freund, G. Kreyerhoff and R. Rodenberg, Vacuum stability in a two Higgs model, Phys. Lett. B 280 (1992) 267 [INSPIRE].

    ADS  Google Scholar 

  267. G. Isidori, V.S. Rychkov, A. Strumia and N. Tetradis, Gravitational corrections to standard model vacuum decay, Phys. Rev. D 77 (2008) 025034 [arXiv:0712.0242] [INSPIRE].

    ADS  Google Scholar 

  268. J. Ellis, J. Espinosa, G. Giudice, A. Hoecker and A. Riotto, The probable fate of the standard model, Phys. Lett. B 679 (2009) 369 [arXiv:0906.0954] [INSPIRE].

    ADS  Google Scholar 

  269. J. Elias-Miro et al., Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].

    ADS  Google Scholar 

  270. G. Degrassi et al., Higgs mass and vacuum stability in the standard model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    ADS  Google Scholar 

  271. S. Alekhin, A. Djouadi and S. Moch, The top quark and Higgs boson masses and the stability of the electroweak vacuum, Phys. Lett. B 716 (2012) 214 [arXiv:1207.0980] [INSPIRE].

    ADS  Google Scholar 

  272. D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, arXiv:1307.3536 [INSPIRE].

  273. V. Branchina and E. Messina, Stability, Higgs boson mass and new physics, arXiv:1307.5193 [INSPIRE].

  274. B.W. Lee, C. Quigg and H. Thacker, Weak interactions at very high-energies: the role of the Higgs boson mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].

    ADS  Google Scholar 

  275. B.W. Lee, C. Quigg and H. Thacker, The strength of weak interactions at very high-energies and the Higgs boson mass, Phys. Rev. Lett. 38 (1977) 883 [INSPIRE].

    ADS  Google Scholar 

  276. R. Casalbuoni, D. Dominici, R. Gatto and C. Giunti, Strong interacting two doublet and doublet singlet Higgs models, Phys. Lett. B 178 (1986) 235 [INSPIRE].

    ADS  Google Scholar 

  277. R. Casalbuoni, D. Dominici, F. Feruglio and R. Gatto, Tree level unitarity violation for large scalar mass in multi-Higgs extensions of the standard model, Nucl. Phys. B 299 (1988)117 [INSPIRE].

    ADS  Google Scholar 

  278. A.G. Akeroyd, A. Arhrib and E.-M. Naimi, Note on tree level unitarity in the general two Higgs doublet model, Phys. Lett. B 490 (2000) 119 [hep-ph/0006035] [INSPIRE].

    ADS  Google Scholar 

  279. S. Kanemura, T. Kubota and E. Takasugi, Lee-Quigg-Thacker bounds for Higgs boson masses in a two doublet model, Phys. Lett. B 313 (1993) 155 [hep-ph/9303263] [INSPIRE].

    ADS  Google Scholar 

  280. A.G. Akeroyd, A. Arhrib and E.-M. Naimi, Note on tree level unitarity in the general two Higgs doublet model, Phys. Lett. B 490 (2000) 119 [hep-ph/0006035] [INSPIRE].

    ADS  Google Scholar 

  281. I. Ginzburg and I. Ivanov, Tree-level unitarity constraints in the most general 2HDM, Phys. Rev. D 72 (2005) 115010 [hep-ph/0508020] [INSPIRE].

    ADS  Google Scholar 

  282. P. Osland, P. Pandita and L. Selbuz, Trilinear Higgs couplings in the two Higgs doublet model with CP-violation, Phys. Rev. D 78 (2008) 015003 [arXiv:0802.0060] [INSPIRE].

    ADS  Google Scholar 

  283. J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: the approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].

    ADS  Google Scholar 

  284. J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Uniqueness of spontaneously broken gauge theories, Phys. Rev. Lett. 30 (1973) 1268 [Erratum ibid. 31 (1973) 572] [INSPIRE].

    ADS  Google Scholar 

  285. J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of gauge invariance from high-energy unitarity bounds on the s matrix, Phys. Rev. D 10 (1974) 1145 [Erratum ibid. D 11 (1975) 972] [INSPIRE].

    ADS  Google Scholar 

  286. C. Llewellyn Smith, High-energy behavior and gauge symmetry, Phys. Lett. B 46 (1973) 233 [INSPIRE].

    ADS  Google Scholar 

  287. H.A. Weldon, Constraints on scalar masses implied by spontaneous symmetry breaking, Phys. Lett. B 146 (1984) 59 [INSPIRE].

    ADS  Google Scholar 

  288. H.A. Weldon, The effects of multiple Higgs bosons on tree unitarity, Phys. Rev. D 30 (1984)1547 [INSPIRE].

    ADS  Google Scholar 

  289. J. Gunion, H. Haber and J. Wudka, Sum rules for Higgs bosons, Phys. Rev. D 43 (1991) 904 [INSPIRE].

    ADS  Google Scholar 

  290. S. Kanemura, T. Kasai and Y. Okada, Mass bounds of the lightest CP even Higgs boson in the two Higgs doublet model, Phys. Lett. B 471 (1999) 182 [hep-ph/9903289] [INSPIRE].

    ADS  Google Scholar 

  291. T. Cheng, E. Eichten and L.-F. Li, Higgs phenomena in asymptotically free gauge theories, Phys. Rev. D 9 (1974) 2259 [INSPIRE].

    ADS  Google Scholar 

  292. M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 3. Scalar quartic couplings, Nucl. Phys. B 249 (1985) 70 [INSPIRE].

    ADS  Google Scholar 

  293. H.E. Haber and R. Hempfling, The renormalization group improved Higgs sector of the minimal supersymmetric model, Phys. Rev. D 48 (1993) 4280 [hep-ph/9307201] [INSPIRE].

    ADS  Google Scholar 

  294. G.D. Kribs, T. Plehn, M. Spannowsky and T.M. Tait, Four generations and Higgs physics, Phys. Rev. D 76 (2007) 075016 [arXiv:0706.3718] [INSPIRE].

    ADS  Google Scholar 

  295. G. Ferrera, J. Guasch, D. López-Val and J. Solà, Triple Higgs boson production in the linear collider, Phys. Lett. B 659 (2008) 297 [arXiv:0707.3162] [INSPIRE].

    ADS  Google Scholar 

  296. A. Arhrib, R. Benbrik and C.-W. Chiang, Probing triple Higgs couplings of the two Higgs doublet model at linear collider, Phys. Rev. D 77 (2008) 115013 [arXiv:0802.0319] [INSPIRE].

    ADS  Google Scholar 

  297. R.N. Hodgkinson, D. López-Val and J. Solà, Higgs boson pair production through gauge boson fusion at linear colliders within the general 2HDM, Phys. Lett. B 673 (2009) 47 [arXiv:0901.2257] [INSPIRE].

    ADS  Google Scholar 

  298. F. Cornet and W. Hollik, Pair production of two-Higgs-doublet model light Higgs bosons in γγ collisions, Phys. Lett. B 669 (2008) 58 [arXiv:0808.0719] [INSPIRE].

    ADS  Google Scholar 

  299. E. Asakawa, D. Harada, S. Kanemura, Y. Okada and K. Tsumura, Higgs boson pair production at a photon-photon collision in the two Higgs doublet model, Phys. Lett. B 672 (2009)354 [arXiv:0809.0094] [INSPIRE].

    ADS  Google Scholar 

  300. N. Bernal, D. López-Val and J. Solà, Single Higgs-boson production through γ-γ scattering within the general 2HDM, Phys. Lett. B 677 (2009) 39 [arXiv:0903.4978] [INSPIRE].

    ADS  Google Scholar 

  301. A. Arhrib, R. Benbrik, C.-H. Chen and R. Santos, Neutral Higgs boson pair production in photon-photon annihilation in the two Higgs doublet model, Phys. Rev. D 80 (2009) 015010 [arXiv:0901.3380] [INSPIRE].

    ADS  Google Scholar 

  302. D. López-Val, J. Solà and N. Bernal, Quantum effects on Higgs-strahlung events at linear colliders within the general 2HDM, Phys. Rev. D 81 (2010) 113005 [arXiv:1003.4312] [INSPIRE].

    ADS  Google Scholar 

  303. E. Asakawa, D. Harada, S. Kanemura, Y. Okada and K. Tsumura, Higgs boson pair production in new physics models at hadron, lepton and photon colliders, Phys. Rev. D 82 (2010)115002 [arXiv:1009.4670] [INSPIRE].

    ADS  Google Scholar 

  304. J. Solà and D. López-Val, Neutral Higgs boson pair production at linear colliders, Fortsch. Phys. 58 (2010) 660 [INSPIRE].

    ADS  Google Scholar 

  305. D. López-Val and J. Solà, Single Higgs-boson production at a photon-photon collider: general 2HDM versus MSSM, Phys. Lett. B 702 (2011) 246 [arXiv:1106.3226] [INSPIRE].

    ADS  Google Scholar 

  306. D. López-Val and J. Solà, Δr in the two-Higgs-doublet model at full one loop levelAnd beyond, Eur. Phys. J. C 73 (2013) 2393 [arXiv:1211.0311] [INSPIRE].

    ADS  Google Scholar 

  307. A.G. Akeroyd, Nonminimal neutral Higgs bosons at LEP-2, Phys. Lett. B 377 (1996) 95 [hep-ph/9603445] [INSPIRE].

    ADS  Google Scholar 

  308. A.G. Akeroyd, Fermiophobic and other nonminimal neutral Higgs bosons at the LHC, J. Phys. G 24 (1998) 1983 [hep-ph/9803324] [INSPIRE].

    ADS  Google Scholar 

  309. T. Appelquist and J. Carazzone, Infrared singularities and massivel fields, Phys. Rev. D 11 (1975)2856 [INSPIRE].

    ADS  Google Scholar 

  310. J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the electroweak vacuum by a scalar threshold effect, JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE].

    ADS  Google Scholar 

  311. A. Arhrib, W. Hollik, S. Peñaranda and M. Capdequi Peyranère, Higgs decays in the two Higgs doublet model: large quantum effects in the decoupling regime, Phys. Lett. B 579 (2004)361 [INSPIRE].

    ADS  Google Scholar 

  312. M. Malinsky and J. Horejsi, Triple gauge vertices at one loop level in THDM, Eur. Phys. J. C 34 (2004) 477 [hep-ph/0308247] [INSPIRE].

    ADS  Google Scholar 

  313. M. Malinsky and J. Horejsi, Possible non-decoupling effects of heavy Higgs bosons in e+e− → W +Wwithin THDM, Eur. Phys. J. C 40 (2005) 137 [hep-ph/0409320] [INSPIRE].

    ADS  Google Scholar 

  314. S. Kanemura, S. Kiyoura, Y. Okada, E. Senaha and C. Yuan, New physics effect on the Higgs selfcoupling, Phys. Lett. B 558 (2003) 157 [hep-ph/0211308] [INSPIRE].

    ADS  Google Scholar 

  315. M. Krawczyk and D. Temes, 2HDM(II) radiative corrections in leptonic tau decays, Eur. Phys. J. C 44 (2005) 435 [hep-ph/0410248] [INSPIRE].

    ADS  Google Scholar 

  316. S. Kanemura, Y. Okada, E. Senaha and C.-P. Yuan, Higgs coupling constants as a probe of new physics, Phys. Rev. D 70 (2004) 115002 [hep-ph/0408364] [INSPIRE].

    ADS  Google Scholar 

  317. S. Kanemura, Y. Okada and E. Senaha, Electroweak baryogenesis and quantum corrections to the triple Higgs boson coupling, Phys. Lett. B 606 (2005) 361 [hep-ph/0411354] [INSPIRE].

    ADS  Google Scholar 

  318. D. López-Val and J. Solà, Neutral Higgs-pair production at linear colliders within the general 2HDM: quantum effects and triple Higgs boson self-interactions, Phys. Rev. D 81 (2010)033003 [arXiv:0908.2898] [INSPIRE].

    ADS  Google Scholar 

  319. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].

    ADS  MATH  Google Scholar 

  320. T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

    ADS  Google Scholar 

  321. T. Hahn and C. Schappacher, The implementation of the minimal supersymmetric standard model in FeynArts and FormCalc, Comput. Phys. Commun. 143 (2002) 54 [hep-ph/0105349] [INSPIRE].

    ADS  MATH  Google Scholar 

  322. T. Hahn and M. Rauch, News from FormCalc and LoopTools, Nucl. Phys. Proc. Suppl. 157 (2006)236 [hep-ph/0601248] [INSPIRE].

    ADS  Google Scholar 

  323. S. Kanemura, S. Matsumoto, T. Nabeshima and H. Taniguchi, Testing Higgs portal dark matter via Z fusion at a linear collider, Phys. Lett. B 701 (2011) 591 [arXiv:1102.5147] [INSPIRE].

    ADS  Google Scholar 

  324. A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].

    ADS  Google Scholar 

  325. S.K. Garg and C.S. Kim, Vector like leptons with extended Higgs sector, arXiv:1305.4712 [INSPIRE].

  326. X. Chu, Y. Mambrini, J. Quevillon and B. Zaldivar, Thermal and non-thermal production of dark matter via Z -portal(s), arXiv:1306.4677 [INSPIRE].

  327. L.G. Almeida, E. Bertuzzo, P.A. Machado and R.Z. Funchal, Does H → γγ taste like vanilla new physics?, JHEP 11 (2012) 085 [arXiv:1207.5254] [INSPIRE].

    ADS  Google Scholar 

  328. A. Joglekar, P. Schwaller and C.E.M. Wagner, Dark matter and enhanced Higgs to di-photon rate from vector-like leptons, JHEP 12 (2012) 064 [arXiv:1207.4235] [INSPIRE].

    ADS  Google Scholar 

  329. P. Schwaller, T.M.P. Tait and R. Vega-Morales, Dark Matter and Vector-like Leptons From Gauged Lepton Number, Phys. Rev. D 88 (2013) 035001 [arXiv:1305.1108] [INSPIRE].

    ADS  Google Scholar 

  330. A. Djouadi and A. Lenz, Sealing the fate of a fourth generation of fermions, Phys. Lett. B 715 (2012)310 [arXiv:1204.1252] [INSPIRE].

    ADS  Google Scholar 

  331. E. Kuflik, Y. Nir and T. Volansky, Implications of Higgs searches on the four generation standard model, Phys. Rev. Lett. 110 (2013) 091801 [arXiv:1204.1975] [INSPIRE].

    ADS  Google Scholar 

  332. O. Eberhardt et al., Impact of a Higgs boson at a mass of 126 GeV on the standard model with three and four fermion generations, Phys. Rev. Lett. 109 (2012) 241802 [arXiv:1209.1101] [INSPIRE].

    ADS  Google Scholar 

  333. L.J. Hall, R. Rattazzi and U. Sarid, The top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [INSPIRE].

    ADS  Google Scholar 

  334. M.S. Carena, M. Olechowski, S. Pokorski and C. Wagner, Electroweak symmetry breaking and bottom-top Yukawa unification, Nucl. Phys. B 426 (1994) 269 [hep-ph/9402253] [INSPIRE].

    ADS  Google Scholar 

  335. M.S. Carena, D. Garcia, U. Nierste and C.E. Wagner, Effective lagrangian for the tbH + interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys. B 577 (2000) 88 [hep-ph/9912516] [INSPIRE].

    ADS  Google Scholar 

  336. M.S. Carena, D. Garcia, U. Nierste and C.E. Wagner, bsγ and supersymmetry with large tan β, Phys. Lett. B 499 (2001) 141 [hep-ph/0010003] [INSPIRE].

    ADS  Google Scholar 

  337. R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring supersymmetry, Eur. Phys. J. C 54 (2008)617 [arXiv:0709.3985] [INSPIRE].

    ADS  Google Scholar 

  338. R.S. Gupta, H. Rzehak and J.D. Wells, How well do we need to measure Higgs boson couplings?, Phys. Rev. D 86 (2012) 095001 [arXiv:1206.3560] [INSPIRE].

    ADS  Google Scholar 

  339. B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188 [INSPIRE].

  340. R. Schabinger and J.D. Wells, A minimal spontaneously broken hidden sector and its impact on Higgs boson physics at the Large Hadron Collider, Phys. Rev. D 72 (2005) 093007 [hep-ph/0509209] [INSPIRE].

    ADS  Google Scholar 

  341. R.S. Gupta and J.D. Wells, Higgs boson search significance deformations due to mixed-in scalars, Phys. Lett. B 710 (2012) 154 [arXiv:1110.0824] [INSPIRE].

    ADS  Google Scholar 

  342. S. Heinemeyer, MSSM Higgs physics at higher orders, Int. J. Mod. Phys. A 21 (2006) 2659 [hep-ph/0407244] [INSPIRE].

    ADS  Google Scholar 

  343. M. Frank et al., The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach, JHEP 02 (2007) 047 [hep-ph/0611326] [INSPIRE].

    ADS  Google Scholar 

  344. L. Randall, Two Higgs models for large tan β and heavy second Higgs, JHEP 02 (2008) 084 [arXiv:0711.4360] [INSPIRE].

    ADS  Google Scholar 

  345. K. Blum and R.T. D’Agnolo, 2 Higgs or not 2 Higgs, Phys. Lett. B 714 (2012) 66 [arXiv:1202.2364] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David López-Val.

Additional information

ArXiv ePrint: 1308.1979

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Val, D., Plehn, T. & Rauch, M. Measuring extended Higgs sectors as a consistent free couplings model. J. High Energ. Phys. 2013, 134 (2013). https://doi.org/10.1007/JHEP10(2013)134

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)134

Keywords

Navigation