Skip to main content
Log in

BRST technique for the cosmological density matrix

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The microcanonical density matrix in closed cosmology has a natural definition as a projector on the space of solutions of Wheeler-DeWitt equations, which is motivated by the absence of global non-vanishing charges and energy in spatially closed gravitational systems. Using the BRST/BFV formalism in relativistic phase space of gauge and ghost variables we derive the path integral representation for this projector and the relevant statistical sum. This derivation circumvents the difficulties associated with the open algebra of noncommutative quantum Dirac constraints and the construction/regularization of the physical inner product in the subspace of BRS singlets. This inner product is achieved via the Batalin-Marnelius gauge fixing in the space of BRS-invariant states, which in its turn is shown to be a result of truncation of the BRST/BFV formalism to the “matter” sector of relativistic phase space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.S. DeWitt, Dynamical Theory of Groups and Fields, Gordon and Breach, New York U.S.A (1965).

    MATH  Google Scholar 

  2. L. Faddeev and V. Popov, Feynman Diagrams for the Yang-Mills Field, Phys. Lett. B 25 (1967) 29 [INSPIRE].

    Article  ADS  Google Scholar 

  3. A.O. Barvinsky, Why there is something rather than nothing (out of everything)?, Phys. Rev. Lett. 99 (2007) 071301 [arXiv:0704.0083] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. A.O. Barvinsky and A.Y. Kamenshchik, Cosmological landscape from nothing: Some like it hot, JCAP 09 (2006) 014 [hep-th/0605132] [INSPIRE].

    Article  ADS  Google Scholar 

  5. A.O. Barvinsky and A.Y. Kamenshchik, Thermodynamics via Creation from Nothing: Limiting the Cosmological Constant Landscape, Phys. Rev. D 74 (2006) 121502 [hep-th/0611206] [INSPIRE].

    ADS  Google Scholar 

  6. A.O. Barvinsky, The path integral for the statistical sum of the microcanonical ensemble in cosmology, JCAP 04 (2011) 034 [arXiv:1012.1568] [INSPIRE].

    Article  ADS  Google Scholar 

  7. A.O. Barvinsky, C. Deffayet and A.Y. Kamenshchik, Anomaly Driven Cosmology: Big Boost Scenario and AdS/CFT Correspondence, JCAP 05 (2008) 020 [arXiv:0801.2063] [INSPIRE].

    Article  ADS  Google Scholar 

  8. A.O. Barvinsky, The a-theorem and temperature of the CMB temperature in cosmology, arXiv:1305.4223 [INSPIRE].

  9. E. Fradkin and G. Vilkovisky, Quantization of relativistic systems with constraints, Phys. Lett. B 55 (1975) 224 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. CERN report TH-2332 (1977).

  11. I. Batalin and G. Vilkovisky, Relativistic S Matrix of Dynamical Systems with Boson and Fermion Constraints, Phys. Lett. B 69 (1977) 309 [INSPIRE].

    Article  ADS  Google Scholar 

  12. E. Fradkin and T. Fradkina, Quantization of Relativistic Systems with Boson and Fermion First and Second Class Constraints, Phys. Lett. B 72 (1978) 343 [INSPIRE].

    Article  ADS  Google Scholar 

  13. I.A. Batalin and E.S. Fradkin, Operator Quantization and Abelization of Dynamical Systems Subject to First Class Constraints, Riv. Nuovo Cim. 9 (1986) 1 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. I.A. Batalin and E.S. Fradkin, Operatorial quantizaion of dynamical systems subject to constraints. A Further study of the construction, Annales Poincare Phys.Theor. 49 (1988) 145 [INSPIRE].

    MathSciNet  Google Scholar 

  15. M. Henneaux and C. Teitelboim, Quantization of gauge systems, Princeton University Press, Princeton U.S.A. (1992).

    MATH  Google Scholar 

  16. A.O. Barvinsky, Unitarity approach to quantum cosmology, Phys. Rept. 230 (1993) 237 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. A.O. Barvinsky and V. Krykhtin, Dirac and BFV quantization methods in the one loop approximation: Closure of the quantum constraint algebra and the conserved inner product, Class. Quant. Grav. 10 (1993) 1957 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. R. Marnelius, Simple BRST quantization of general gauge models, Nucl. Phys. B 395 (1993) 647 [hep-th/9212003] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. I. Batalin and R. Marnelius, Solving general gauge theories on inner product spaces, Nucl. Phys. B 442 (1995) 669 [hep-th/9501004] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. R. Ferraro, M. Henneaux and M. Puchin, On the quantization of reducible gauge systems, J. Math. Phys. 34 (1993) 2757 [hep-th/9210070] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. R. Ferraro, M. Henneaux and M. Puchin, Path integral and solutions of the constraint equations: The case of reducible gauge theories, Phys. Lett. B 333 (1994) 380 [hep-th/9405160] [INSPIRE].

    Article  ADS  Google Scholar 

  22. R. Marnelius and U. Quaade, BRST quantization of gauge theories like SL(2, \( \mathbb{R} \)) on inner product spaces, J. Math. Phys. 36 (1995) 3289 [hep-th/9501003] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. L. Faddeev, Feynman integral for singular Lagrangians, Theor. Math. Phys. 1 (1969) 1 [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  24. A.O. Barvinsky, The general semiclassical solution of the Wheeler-DeWitt equations and the issue of unitarity in quantum cosmology, Phys. Lett. B 241 (1990) 201 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. A.O. Barvinsky, Geometry of the Dirac quantization of constrained systems, gr-qc/9612003 [INSPIRE].

  26. J.D. Brown and J.W. York, Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. J.D. Brown and J.W. York, The microcanonical functional integral. 1. The gravitational field, Phys. Rev. D 47 (1993) 1420 [gr-qc/9209014] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  28. B.L. Altshuler and A.O. Barvinsky, Physics-Uspekhi 39 (1996) 429.

    Google Scholar 

  29. J. Hartle and S. Hawking, Wave Function of the Universe, Phys. Rev. D 28 (1983) 2960 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. S. Hawking, The Quantum State of the Universe, Nucl. Phys. B 239 (1984) 257 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. A.D. Linde, Quantum Creation of the Inflationary Universe, Lett. Nuovo Cim. 39 (1984) 401 [INSPIRE].

    Article  ADS  Google Scholar 

  32. V. Rubakov, Particle Creation In A Tunneling Universe, JETP Lett. 39 (1984) 107 [INSPIRE].

    ADS  Google Scholar 

  33. Y. Zeldovich and A.A. Starobinsky, Quantum creation of a universe in a nontrivial topology, Sov. Astron. Lett. 10 (1984) 135 [INSPIRE].

    ADS  Google Scholar 

  34. A. Vilenkin, Quantum Creation of Universes, Phys. Rev. D 30 (1984) 509 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. R. Marnelius, Proper BRST quantization of relativistic particles, Nucl. Phys. B 418 (1994) 353 [hep-th/9309002] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. A.O. Barvinsky and A.Yu. Kamenshchik, Selection rules for the Wheeler-DeWitt equation in quantum cosmology, work in progress.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.O. Barvinsky.

Additional information

ArXiv ePrint: 1308.3270

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barvinsky, A. BRST technique for the cosmological density matrix. J. High Energ. Phys. 2013, 51 (2013). https://doi.org/10.1007/JHEP10(2013)051

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)051

Keywords

Navigation