Skip to main content
Log in

Scalar-mediated \( t\bar{t} \) forward-backward asymmetry

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

A large forward-backward asymmetry in \( t\bar{t} \) production, for largeinvariant mass of the \( t\bar{t} \) system, has been recently observed by the CDF collaboration. Among the scalar mediated mechanisms that can explain such a large asymmetry, all colored representations are inconsistent by more than 2σ with at least one other top-related measurement. In contrast, the t-channel exchange of a color-singlet weak-doublet scalar is consistent with the differential and with the integrated \( t\bar{t} \) cross section measurements. Constraints from flavor changing processes dictate a very specific structure for the Yukawa couplings of such a new scalar. No sizable deviation in the differential or integrated \( t\bar{t} \) production cross section is expected at the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CDF collaboration, T. Aaltonen et al., Evidence for a mass dependent forward-backward asymmetry in top quark pair production, Phys. Rev. D 83 (2011) 112003 [arXiv:1101.0034] [ INSPIRE].

    ADS  Google Scholar 

  2. L.G. Almeida, G.F. Sterman and W. Vogelsang, Threshold resummation for the top quark charge asymmetry, Phys. Rev. D 78 (2008) 014008 [arXiv:0805.1885] [ INSPIRE].

    ADS  Google Scholar 

  3. M. Bowen, S. Ellis and D. Rainwater, Standard model top quark asymmetry at the Fermilab Tevatron, Phys. Rev. D 73 (2006) 014008 [hep-ph/0509267] [ INSPIRE].

    ADS  Google Scholar 

  4. O. Antunano, J.H. Kuhn and G. Rodrigo, Top quarks, axigluons and charge asymmetries at hadron colliders, Phys. Rev. D 77 (2008) 014003 [arXiv:0709.1652] [ INSPIRE].

    ADS  Google Scholar 

  5. D0 collaboration, V. Abazov et al., First measurement of the forward-backward charge asymmetry in top quark pair production, Phys. Rev. Lett. 100 (2008) 142002 [arXiv:0712.0851] [ INSPIRE].

    Article  ADS  Google Scholar 

  6. CDF collaboration, T. Aaltonen et al., Forward-backward asymmetry in top quark production in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 101 (2008) 202001 [arXiv:0806.2472] [ INSPIRE].

    Article  ADS  Google Scholar 

  7. B. Grinstein, A.L. Kagan, M. Trott and J. Zupan, Forward-backward asymmetry in \( t\bar{t}t\bar{t} \) production from flavour symmetries, Phys. Rev. Lett. 107 (2011) 012002 [arXiv:1102.3374] [ INSPIRE].

    Article  ADS  Google Scholar 

  8. K.M. Patel and P. Sharma, Forward-backward asymmetry in top quark production from light colored scalars in SO(10) model, JHEP 04 (2011) 085 [arXiv:1102.4736] [ INSPIRE].

    Article  ADS  Google Scholar 

  9. Z. Ligeti, G.M. Tavares and M. Schmaltz, Explaining the \( t\bar{t} \) forward-backward asymmetry without dijet or flavor anomalies, JHEP 06 (2011) 109 [arXiv:1103.2757] [ INSPIRE].

    Article  ADS  Google Scholar 

  10. J. Aguilar-Saavedra and M. Pérez-Victoria, Probing the Tevatron \( t\bar{t} \) asymmetry at LHC, JHEP 05 (2011) 034 [arXiv:1103.2765] [ INSPIRE].

    Article  ADS  Google Scholar 

  11. M.I. Gresham, I.-W. Kim and K.M. Zurek, On models of new physics for the Tevatron top A FB , Phys. Rev. D 83 (2011) 114027 [arXiv:1103.3501] [ INSPIRE].

    ADS  Google Scholar 

  12. J. Shu, K. Wang and G. Zhu, A revisit to top quark forward-backward asymmetry, arXiv:1104.0083 [ INSPIRE].

  13. J. Aguilar-Saavedra and M. Pérez-Victoria, No like-sign tops at Tevatron: constraints on extended models and implications for the \( t\bar{t} \) asymmetry, Phys. Lett. B 701 (2011) 93 [arXiv:1104.1385] [ INSPIRE].

    ADS  Google Scholar 

  14. A.E. Nelson, T. Okui and T.S. Roy, A unified, flavor symmetric explanation for the \( t\bar{t} \) asymmetry and Wjj excess at CDF, arXiv:1104.2030 [ INSPIRE].

  15. G. Zhu, B physics constraints on a flavor symmetric scalar model to account for the \( t\bar{t} \) asymmetry and W jj excess at CDF, Phys. Lett. B 703 (2011) 142 [arXiv:1104.3227] [ INSPIRE].

    ADS  Google Scholar 

  16. K. Babu, M. Frank and S.K. Rai, Top quark asymmetry and Wjj excess at CDF from gauged flavor symmetry, Phys. Rev. Lett. 107 (2011) 061802 [arXiv:1104.4782] [ INSPIRE].

    Article  ADS  Google Scholar 

  17. Y. Cui, Z. Han and M.D. Schwartz, Top condensation as a motivated explanation of the top forward-backward asymmetry, JHEP 07 (2011) 127 [arXiv:1106.3086] [ INSPIRE].

    Article  ADS  Google Scholar 

  18. J. Aguilar-Saavedra and M. Pérez-Victoria, Simple models for the top asymmetry: constraints and predictions, arXiv:1107.0841 [ INSPIRE].

  19. L. Vecchi, Color & weak triplet scalars, the dimuon asymmetry in B s decay, the top forward-backward asymmetry and the CDF dijet excess, JHEP 10 (2011) 003 [arXiv:1107.2933] [ INSPIRE].

    Article  ADS  Google Scholar 

  20. J. Shu, T.M. Tait and K. Wang, Explorations of the top quark forward-backward asymmetry at the Tevatron, Phys. Rev. D 81 (2010) 034012 [arXiv:0911.3237] [ INSPIRE].

    ADS  Google Scholar 

  21. A. Arhrib, R. Benbrik and C.-H. Chen, Forward-backward asymmetry of top quark in diquark models, Phys. Rev. D 82 (2010) 034034 [arXiv:0911.4875] [ INSPIRE].

    ADS  Google Scholar 

  22. I. Dorsner, S. Fajfer, J.F. Kamenik and N. Kosnik, Light colored scalars from grand unification and the forward-backward asymmetry in \( t\bar{t} \) production, Phys. Rev. D 81 (2010) 055009 [arXiv:0912.0972] [ INSPIRE].

    ADS  Google Scholar 

  23. D.-W. Jung, P. Ko, J.S. Lee and S.-h. Nam, Model independent analysis of the forward-backward asymmetry of top quark production at the Tevatron, Phys. Lett. B 691 (2010) 238 [arXiv:0912.1105] [ INSPIRE].

    ADS  Google Scholar 

  24. J. Cao, Z. Heng, L. Wu and J.M. Yang, Top quark forward-backward asymmetry at the Tevatron: a comparative study in different new physics models, Phys. Rev. D 81 (2010) 014016 [arXiv:0912.1447] [ INSPIRE].

    ADS  Google Scholar 

  25. Q.-H. Cao, D. McKeen, J.L. Rosner, G. Shaughnessy and C.E. Wagner, Forward-backward asymmetry of top quark pair production, Phys. Rev. D 81 (2010) 114004 [arXiv:1003.3461] [ INSPIRE].

    ADS  Google Scholar 

  26. CDF collaboration, T. Aaltonen et al., First measurement of the \( t\bar{t} \) differential cross section \( {{{d\sigma }} \left/ {{dM\left( {t\bar{t}} \right)}} \right.} \) in \( p\bar{p} \) Collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 102 (2009) 222003 [arXiv:0903.2850] [ INSPIRE].

    Article  ADS  Google Scholar 

  27. V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Renormalization-group improved predictions for top-quark pair production at hadron colliders, JHEP 09 (2010) 097 [arXiv:1003.5827] [ INSPIRE].

    Article  ADS  Google Scholar 

  28. CDF collaboration, Combination of CDF top quark pair production cross section measurements with up to 4.6 fb −1, CDF note 9913 (2009).

  29. CDF and D0 collaboration, C. Schwanenberger, Top quark production at the Tevatron, arXiv:1012.2319 [ INSPIRE].

  30. D0 Collaboration, Measurements of the \( t\bar{t} \) corss section in the lepton + jets chammel with 4.3fb −1, D0 note 6037 (2010).

  31. N. Kidonakis, Next-to-next-to-leading soft-gluon corrections for the top quark cross section and transverse momentum distribution, Phys. Rev. D 82 (2010) 114030 [arXiv:1009.4935] [ INSPIRE].

    ADS  Google Scholar 

  32. U. Langenfeld, S. Moch and P. Uwer, Measuring the running top-quark mass, Phys. Rev. D 80 (2009) 054009 [arXiv:0906.5273] [ INSPIRE].

    ADS  Google Scholar 

  33. M. Cacciari, S. Frixione, M.L. Mangano, P. Nason and G. Ridolfi, Updated predictions for the total production cross sections of top and of heavier quark pairs at the Tevatron and at the LHC, JHEP 09 (2008) 127 [arXiv:0804.2800] [ INSPIRE].

    Article  ADS  Google Scholar 

  34. A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [ INSPIRE].

    Article  ADS  Google Scholar 

  35. CTEQ collaboration, H. Lai et al., Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions, Eur. Phys. J. C 12 (2000) 375 [hep-ph/9903282] [ INSPIRE].

    Article  ADS  Google Scholar 

  36. K. Blum et al., Implications of the CDF \( t\bar{t} \) forward-backward asymmetry for boosted top physics, Phys. Lett. B 702 (2011) 364 [arXiv:1102.3133] [ INSPIRE].

    ADS  Google Scholar 

  37. S. Jung, A. Pierce and J.D. Wells, Top quark asymmetry from a non-Abelian horizontal symmetry, Phys. Rev. D 83 (2011) 114039 [arXiv:1103.4835] [ INSPIRE].

    ADS  Google Scholar 

  38. K. Blum, Y. Grossman, Y. Nir and G. Perez, Combining \( {K^0} - {\bar{K}^0} \) mixing and \( {D^0} - {\bar{D}^0} \) mixing to constrain the flavor structure of new physics, Phys. Rev. Lett. 102 (2009) 211802 [arXiv:0903.2118] [ INSPIRE].

    Article  ADS  Google Scholar 

  39. B. Grinstein, A. L. Kagan, M. Trott and J. Zupan, work in progress.

  40. G. Isidori, Y. Nir and G. Perez, Flavor physics constraints for physics beyond the standard model, Ann. Rev. Nucl. Part. Sci. 60 (2010) 355 [arXiv:1002.0900] [ INSPIRE].

    Article  ADS  Google Scholar 

  41. M. Beneke, G. Buchalla, M. Neubert and C.T. Sachrajda, QCD factorization in B → πK, ππ decays and extraction of Wolfenstein parameters, Nucl. Phys. B 606 (2001) 245 [hep-ph/0104110] [ INSPIRE].

    Article  ADS  Google Scholar 

  42. G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68 (1996) 1125 [hep-ph/9512380] [ INSPIRE].

    Article  ADS  Google Scholar 

  43. M. Beneke, G. Buchalla, M. Neubert and C.T. Sachrajda, QCD factorization for B → ππ decays: strong phases and CP-violation in the heavy quark limit, Phys. Rev. Lett. 83 (1999) 1914 [hep-ph/9905312] [ INSPIRE].

    Article  ADS  Google Scholar 

  44. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [ INSPIRE].

    ADS  Google Scholar 

  45. Belle collaboration, A. Das et al., Measurements of branching fractions for B 0 → D s + π and \( {\bar{B}^0} \to D_s^{+} {K^{-} } \), Phys. Rev. D 82 (2010) 051103 [arXiv:1007.4619] [ INSPIRE].

    ADS  Google Scholar 

  46. Belle collaboration, M. Iwabuchi et al., Search for B + → D ∗+ π 0 decay, Phys. Rev. Lett. 101 (2008) 041601 [arXiv:0804.0831] [ INSPIRE].

    Article  ADS  Google Scholar 

  47. BELLE collaboration, F. Ronga et al., Measurements of CP-violation in B 0 → D ∗− π + and B 0 → D π + decays, Phys. Rev. D 73 (2006) 092003 [hep-ex/0604013] [ INSPIRE].

    ADS  Google Scholar 

  48. G. Branco et al., Theory and phenomenology of two-Higgs-doublet models, arXiv:1106.0034 [ INSPIRE].

  49. Q.-H. Cao et al., W plus two jets from a quasi-inert Higgs doublet, JHEP 08 (2011) 002 [arXiv:1104.4776] [ INSPIRE].

    Article  ADS  Google Scholar 

  50. D0 collaboration, V.M. Abazov et al., Model-independent measurement of t-channel single top quark production in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, arXiv:1105.2788 [ INSPIRE].

  51. N. Kidonakis, Single top production at the Tevatron: threshold resummation and finite-order soft gluon corrections, Phys. Rev. D 74 (2006) 114012 [hep-ph/0609287] [ INSPIRE].

    ADS  Google Scholar 

  52. CMS collaboration, S. Chatrchyan et al., Measurement of the t-channel single top quark production cross section in pp collisions at \( \sqrt {s} = 7 \) TeV, Phys. Rev. Lett. 107 (2011) 091802 [arXiv:1106.3052] [ INSPIRE].

    Article  ADS  Google Scholar 

  53. N. Kidonakis, Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production, Phys. Rev. D 83 (2011) 091503 [arXiv:1103.2792] [ INSPIRE].

    ADS  Google Scholar 

  54. CDF collaboration, T. Aaltonen et al., Direct top-quark width measurement CDF, Phys. Rev. Lett. 105 (2010) 232003 [arXiv:1008.3891] [ INSPIRE].

    Article  ADS  Google Scholar 

  55. D0 collaboration, V.M. Abazov et al., Determination of the width of the top quark, Phys. Rev. Lett. 106 (2011) 022001 [arXiv:1009.5686] [ INSPIRE].

    Article  ADS  Google Scholar 

  56. CDF collaboration, T. Aaltonen et al., Search for sign-like top quark pair production af CDF with 6.1 fb −1, CDF note 10466 (2011).

  57. CDF collaboration, T. Aaltonen et al., Search for new particles decaying into dijets in proton-antiproton collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. D 79 (2009) 112002 [arXiv:0812.4036] [ INSPIRE].

    ADS  Google Scholar 

  58. UA2 collaboration, J. Alitti et al., A Search for new intermediate vector mesons and excited quarks decaying to two jets at the CERN \( \bar{p}p \) collider, Nucl. Phys. B 400 (1993) 3 [ INSPIRE].

    Article  ADS  Google Scholar 

  59. CMS collaboration, V. Khachatryan et al., Measurement of dijet angular distributions and search for quark compositeness in pp collisions at \( \sqrt {s} = 7 \) TeV, Phys. Rev. Lett. 106 (2011) 201804 [arXiv:1102.2020] [ INSPIRE].

    Article  ADS  Google Scholar 

  60. ATLAS collaboration, G. Aad et al., Search for new physics in dijet mass and angular distributions in pp collisions at \( \sqrt {s} = 7 \) TeV measured with the ATLAS detector, New J. Phys. 13 (2011) 053044 [arXiv:1103.3864] [ INSPIRE].

    Article  ADS  Google Scholar 

  61. M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Addison-Wesley, U.S.A. (1995), p. 842.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonit Hochberg.

Additional information

ArXiv ePrint: 1107.4350

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blum, K., Hochberg, Y. & Nir, Y. Scalar-mediated \( t\bar{t} \) forward-backward asymmetry. J. High Energ. Phys. 2011, 124 (2011). https://doi.org/10.1007/JHEP10(2011)124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2011)124

Keywords

Navigation