Skip to main content
Log in

Non-supersymmetric string theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

A class of non-supersymmetric string backgrounds can be constructed using twists that involve space-time fermion parity. We propose a non-perturbative definition of string theory in these backgrounds via gauge theories with supersymmetry softly broken by twisted boundary conditions. The perturbative string spectrum is reproduced, and qualitative effects of the interactions are discussed. Along the way, we find an interesting mechanism for inflation. The end state of closed string tachyon condensation is a highly excited state in the gauge theory which, in all likelihood, does not have a geometric interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Rohm, Spontaneous supersymmetry breaking in supersymmetric string theories, Nucl. Phys. B 237 (1984) 553 [ INSPIRE].

    Article  ADS  Google Scholar 

  2. J. Scherk and J.H. Schwarz, Spontaneous breaking of supersymmetry through dimensional reduction, Phys. Lett. B 82 (1979) 60 [ INSPIRE].

    ADS  Google Scholar 

  3. B. Craps, S. Sethi and E.P. Verlinde, A matrix big bang, JHEP 10 (2005) 005 [hep-th/0506180] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. M. Li and W. Song, Shock waves and cosmological matrix models, JHEP 10 (2005) 073 [hep-th/0507185] [ INSPIRE].

    Article  ADS  Google Scholar 

  5. D. Robbins and S. Sethi, A matrix model for the null-brane, JHEP 02 (2006) 052 [hep-th/0509204] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. C.-S. Chu and P.-M. Ho, Time-dependent AdS/CFT duality and null singularity, JHEP 04 (2006) 013 [hep-th/0602054] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. S.R. Das and J. Michelson, Matrix membrane big bangs and D-brane production, Phys. Rev. D 73 (2006) 126006 [hep-th/0602099] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. S.R. Das, J. Michelson, K. Narayan and S.P. Trivedi, Time dependent cosmologies and their duals, Phys. Rev. D 74 (2006) 026002 [hep-th/0602107] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. F.-L. Lin and W.-Y. Wen, Supersymmetric null-like holographic cosmologies, JHEP 05 (2006) 013 [hep-th/0602124] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. M. Li, A class of cosmological matrix models, Phys. Lett. B 626 (2005) 202 [hep-th/0506260] [ INSPIRE].

    ADS  Google Scholar 

  11. J.-H. She, A matrix model for Misner universe, JHEP 01 (2006) 002 [hep-th/0509067] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. B. Chen, Y.-l. He and P. Zhang, Exactly solvable model of superstring in plane-wave background with linear null dilaton, Nucl. Phys. B 741 (2006) 269 [hep-th/0509113] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. B. Craps, A. Rajaraman and S. Sethi, Effective dynamics of the matrix big bang, Phys. Rev. D 73 (2006) 106005 [hep-th/0601062] [ INSPIRE].

    ADS  Google Scholar 

  14. E.J. Martinec, D. Robbins and S. Sethi, Toward the end of time, JHEP 08 (2006) 025 [hep-th/0603104] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. T. Banks and L. Motl, A nonsupersymmetric matrix orbifold, JHEP 03 (2000) 027 [hep-th/9910164] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. A. Bergman and O.J. Ganor, Dipoles, twists and noncommutative gauge theory, JHEP 10 (2000) 018 [hep-th/0008030] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. A. Bergman, K. Dasgupta, O.J. Ganor, J.L. Karczmarek and G. Rajesh, Nonlocal field theories and their gravity duals, Phys. Rev. D 65 (2002) 066005 [hep-th/0103090] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. S. Ganguli, O.J. Ganor and J.A. Gill, Twisted six-dimensional gauge theories on tori, matrix models,and integrable systems, JHEP 09 (2004) 014 [hep-th/0311042] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. M.S. Costa and M. Gutperle, The Kaluza-Klein Melvin solution in M-theory, JHEP 03 (2001) 027 [hep-th/0012072] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. A. Sen, Tachyon condensation on the brane anti-brane system, JHEP 08 (1998) 012 [hep-th/9805170] [ INSPIRE].

    Article  ADS  Google Scholar 

  21. A. Adams, J. Polchinski and E. Silverstein, Don’t panic! Closed string tachyons in ALE space-times, JHEP 10 (2001) 029 [hep-th/0108075] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. J.A. Harvey, D. Kutasov, E.J. Martinec and G.W. Moore, Localized tachyons and RG flows, hep-th/0111154 [ INSPIRE].

  23. G.T. Horowitz, Tachyon condensation and black strings, JHEP 08 (2005) 091 [hep-th/0506166] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. G.T. Horowitz and E. Silverstein, The inside story: quasilocal tachyons and black holes, Phys. Rev. D 73 (2006) 064016 [hep-th/0601032] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  25. L.J. Dixon and J.A. Harvey, String theories in ten-dimensions without space-time supersymmetry, Nucl. Phys. B 274 (1986) 93 [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. O. Bergman and M.R. Gaberdiel, Dualities of type 0 strings, JHEP 07 (1999) 022 [hep-th/9906055] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. J.D. Blum and K.R. Dienes, Duality without supersymmetry: the case of the SO(16) × SO(16) string, Phys. Lett. B 414 (1997) 260 [hep-th/9707148] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  28. J.D. Blum and K.R. Dienes, Strong/weak coupling duality relations for nonsupersymmetric string theories, Nucl. Phys. B 516 (1998) 83 [hep-th/9707160] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. T. Banks, W. Fischler, S. Shenker and L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. T. Banks, TASI lectures on matrix theory, hep-th/9911068 [ INSPIRE].

  31. W. Taylor, M(atrix) theory: matrix quantum mechanics as a fundamental theory, Rev. Mod. Phys. 73 (2001) 419 [hep-th/0101126] [ INSPIRE].

    Article  ADS  MATH  Google Scholar 

  32. J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1998).

    Google Scholar 

  33. A.A. Tseytlin and C. Vafa, Elements of string cosmology, Nucl. Phys. B 372 (1992) 443 [hep-th/9109048] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. G.T. Horowitz and E.J. Martinec, Comments on black holes in matrix theory, Phys. Rev. D 57 (1998) 4935 [hep-th/9710217] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, Matrix string theory, Nucl. Phys. B 500 (1997) 43 [hep-th/9703030] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. N. Seiberg and E. Witten, Spin structures in string theory, Nucl. Phys. B 276 (1986) 272 [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. T. Banks and L. Motl, Heterotic strings from matrices, JHEP 12 (1997) 004 [hep-th/9703218] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. D.A. Lowe, Heterotic matrix string theory, Phys. Lett. B 403 (1997) 243 [hep-th/9704041] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  39. S.-J. Rey, Heterotic M(atrix) strings and their interactions, Nucl. Phys. B 502 (1997) 170 [hep-th/9704158] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. P. Hořava, Matrix theory and heterotic strings on tori, Nucl. Phys. B 505 (1997) 84 [hep-th/9705055] [ INSPIRE].

    ADS  Google Scholar 

  41. J. Polchinski and E. Witten, Evidence for heterotic-type-I string duality, Nucl. Phys. B 460 (1996) 525 [hep-th/9510169] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. W. Taylor and M. Van Raamsdonk, Multiple D0-branes in weakly curved backgrounds, Nucl. Phys. B 558 (1999) 63 [hep-th/9904095] [ INSPIRE].

    Article  ADS  Google Scholar 

  43. E.J. Martinec and V. Sahakian, Black holes and the super Yang-Mills phase diagram. 2., Phys. Rev. D 59 (1999) 124005 [hep-th/9810224] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  44. E.J. Martinec and V. Sahakian, Black holes and five-brane thermodynamics, Phys. Rev. D 60 (1999) 064002 [hep-th/9901135] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  45. E.J. Martinec, Black holes and the phases of brane thermodynamics, hep-th/9909049 [ INSPIRE].

  46. G.T. Horowitz and R.C. Myers, The AdS/CFT correspondence and a new positive energy conjecture for general relativity, Phys. Rev. D 59 (1998) 026005 [hep-th/9808079] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  47. O.J. Ganor, S. Ramgoolam and W. Taylor, Branes, fluxes and duality in M(atrix) theory, Nucl. Phys. B 492 (1997) 191 [hep-th/9611202] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  48. L. Susskind, T duality in M(atrix) theory and S duality in field theory, hep-th/9611164 [ INSPIRE].

  49. S. Sethi and L. Susskind, Rotational invariance in the M(atrix) formulation of type IIB theory, Phys. Lett. B 400 (1997) 265 [hep-th/9702101] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  50. T. Banks and N. Seiberg, Strings from matrices, Nucl. Phys. B 497 (1997) 41 [hep-th/9702187] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  52. O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. A.W. Peet and J. Polchinski, UV/IR relations in AdS dynamics, Phys. Rev. D 59 (1999) 065011 [hep-th/9809022] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  54. N. Seiberg, Why is the matrix model correct?, Phys. Rev. Lett. 79 (1997) 3577 [hep-th/9710009] [ INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savdeep Sethi.

Additional information

ArXiv ePrint: 0904.3498

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinec, E.J., Robbins, D. & Sethi, S. Non-supersymmetric string theory. J. High Energ. Phys. 2011, 78 (2011). https://doi.org/10.1007/JHEP10(2011)078

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2011)078

Keywords

Navigation