Skip to main content
Log in

The real singlet scalar dark matter model

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present an undated comprehensive analysis for the simplest dark matter model in which a real singlet scalar with a Z 2 symmetry is introduced to extend the standard model. According to the observed dark matter abundance, we predict the dark matter direct and indirect detection cross sections for the whole parameter space. The Breit-Wigner resonance effect has been considered to calculate the thermally averaged annihilation cross section. It is found that three regions can be excluded by the current direct and indirect dark matter search experiments. In addition, we also discuss the implication of this model for the Higgs searches at colliders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [SPIRES].

    Article  ADS  Google Scholar 

  2. G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [SPIRES].

    Article  ADS  Google Scholar 

  3. E. Komatsu et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, arXiv:1001.4538 [SPIRES].

  4. PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [SPIRES].

    Article  ADS  Google Scholar 

  5. The Fermi LAT collaboration, A.A. Abdo et al., Measurement of the Cosmic Ray e+ plus e-spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope, Phys. Rev. Lett. 102 (2009) 181101 [arXiv:0905.0025] [SPIRES].

    Article  ADS  Google Scholar 

  6. J. Chang et al., An excess of cosmic ray electrons at energies of 300–800 GeV, Nature 456 (2008) 362 [SPIRES].

    Article  ADS  Google Scholar 

  7. W.-L. Guo, Y.-L. Wu and Y.-F. Zhou, Exploration of decaying dark matter in a left-right symmetric model, Phys. Rev. D 81 (2010) 075014 [arXiv:1001.0307] [SPIRES].

    ADS  Google Scholar 

  8. The CDMS-II collaboration, Z. Ahmed et al., Dark Matter Search Results from the CDMS II Experiment, Science 327 (2010) 1619 [arXiv:0912.3592] [SPIRES].

    Article  ADS  Google Scholar 

  9. DAMA collaboration, R. Bernabei et al., First results from DAMA/LIBRA and the combined results with DAMA/NaI, Eur. Phys. J. C 56 (2008) 333 [arXiv:0804.2741] [SPIRES].

    Article  Google Scholar 

  10. CoGeNT collaboration, C.E. Aalseth et al., Results from a Search for Light-Mass Dark Matter with a P-type Point Contact Germanium Detector, arXiv:1002.4703 [SPIRES].

  11. J. McDonald, Gauge Singlet Scalars as Cold Dark Matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [SPIRES].

    ADS  Google Scholar 

  12. C.P. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: A singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [SPIRES].

    Article  ADS  Google Scholar 

  13. M.C. Bento, O. Bertolami, R. Rosenfeld and L. Teodoro, Self-interacting dark matter and invisibly decaying Higgs, Phys. Rev. D 62 (2000) 041302 [astro-ph/0003350] [SPIRES].

    ADS  Google Scholar 

  14. C. Bird, P. Jackson, R.V. Kowalewski and M. Pospelov, Search for dark matter in b → s transitions with missing energy, Phys. Rev. Lett. 93 (2004) 201803 [hep-ph/0401195] [SPIRES].

    Article  ADS  Google Scholar 

  15. H. Davoudiasl, R. Kitano, T. Li and H. Murayama, The new minimal standard model, Phys. Lett. B 609 (2005) 117 [hep-ph/0405097] [SPIRES].

    ADS  Google Scholar 

  16. G. Cynolter, E. Lendvai and G. Pocsik, Note on unitarity constraints in a model for a singlet scalar dark matter candidate, Acta Phys. Polon. B 36 (2005) 827 [hep-ph/0410102] [SPIRES].

    ADS  Google Scholar 

  17. S.-h. Zhu, Electro-weak symmetry spontaneously breaking and cold dark matter, hep-ph/0601224 [SPIRES].

  18. X.-G. He, T. Li, X.-Q. Li and H.-C. Tsai, Scalar dark matter effects in Higgs and top quark decays, Mod. Phys. Lett. A 22 (2007) 2121 [hep-ph/0701156] [SPIRES].

    ADS  Google Scholar 

  19. S. Andreas, T. Hambye and M.H.G. Tytgat, WIMP dark matter, Higgs exchange and DAMA, JCAP 10 (2008) 034 [arXiv:0808.0255] [SPIRES].

    ADS  Google Scholar 

  20. C.E. Yaguna, Gamma rays from the annihilation of singlet scalar dark matter, JCAP 03 (2009) 003 [arXiv:0810.4267] [SPIRES].

    ADS  Google Scholar 

  21. X.-G. He, T. Li, X.-Q. Li, J. Tandean and H.-C. Tsai, Constraints on Scalar Dark Matter from Direct Experimental Searches, Phys. Rev. D 79 (2009) 023521 [arXiv:0811.0658] [SPIRES].

    ADS  Google Scholar 

  22. W.-L. Guo, L.-M. Wang, Y.-L. Wu, Y.-F. Zhou and C. Zhuang, Gauge-singlet dark matter in a left-right symmetric model with spontaneous CP-violation, Phys. Rev. D 79 (2009) 055015 [arXiv:0811.2556] [SPIRES].

    ADS  Google Scholar 

  23. B. Grzadkowski and J. Wudka, Pragmatic approach to the little hierarchy problem: the case for Dark Matter and neutrino physics, Phys. Rev. Lett. 103 (2009) 091802 [arXiv:0902.0628] [SPIRES].

    Article  ADS  Google Scholar 

  24. K. Kohri, J. McDonald and N. Sahu, Cosmic Ray Anomalies and Dark Matter Annihilation to Muons via a Higgs Portal Hidden Sector, Phys. Rev. D 81 (2010) 023530 [arXiv:0905.1312] [SPIRES].

    ADS  Google Scholar 

  25. X.-G. He, T. Li, X.-Q. Li, J. Tandean and H.-C. Tsai, The Simplest Dark-Matter Model, CDMS II Results and Higgs Detection at LHC, Phys. Lett. B 688 (2010) 332 [arXiv:0912.4722] [SPIRES].

    ADS  Google Scholar 

  26. M. Farina, D. Pappadopulo and A. Strumia, CDMS stands for Constrained Dark Matter Singlet, Phys. Lett. B 688 (2010) 329 [arXiv:0912.5038] [SPIRES].

    ADS  Google Scholar 

  27. X.-G. He, S.-Y. Ho, J. Tandean and H.-C. Tsai, Scalar Dark Matter and Standard Model with Four Generations, Phys. Rev. D 82 (2010) 035016 [arXiv:1004.3464] [SPIRES].

    ADS  Google Scholar 

  28. C. Arina, F.-X. Josse-Michaux and N. Sahu, A Tight Connection Between Direct and Indirect Detection of Dark Matter through Higgs Portal Couplings to a Hidden Sector, Phys. Rev. D 82 (2010) 015005 [arXiv:1004.3953] [SPIRES].

    ADS  Google Scholar 

  29. S. Kanemura, S. Matsumoto, T. Nabeshima and N. Okada, Can WIMP Dark Matter overcome the Nightmare Scenario?, Phys. Rev. D 82 (2010) 055026 [ar Xiv:1005.5651] [SPIRES].

    ADS  Google Scholar 

  30. V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf and G. Shaughnessy, LHC Phenomenology of an Extended Standard Model with a Real Scalar Singlet, Phys. Rev. D 77 (2008) 035005 [arXiv:0706.4311] [SPIRES].

    ADS  Google Scholar 

  31. V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf and G. Shaughnessy, Complex Singlet Extension of the Standard Model, Phys. Rev. D 79 (2009) 015018 [arXiv:0811.0393] [SPIRES].

    ADS  Google Scholar 

  32. A. Goudelis, Y. Mambrini and C. Yaguna, Antimatter signals of singlet scalar dark matter, JCAP 12 (2009) 008 [arXiv:0909.2799] [SPIRES].

    ADS  Google Scholar 

  33. M. Gonderinger, Y. Li, H. Patel and M.J. Ramsey-Musolf, Vacuum Stability, Perturbativity and Scalar Singlet Dark Matter, JHEP 01 (2010) 053 [arXiv:0910.3167] [SPIRES].

    Article  ADS  Google Scholar 

  34. A. Bandyopadhyay, S. Chakraborty, A. Ghosal and D. Majumdar, Constraining Scalar Singlet Dark Matter with CDMS, XENON and DAMA and Prediction for Direct Detection Rates, arXiv:1003.0809 [SPIRES].

  35. S. Andreas, C. Arina, T. Hambye, F.-S. Ling and M.H.G. Tytgat, A light scalar WIMP through the Higgs portal and CoGeNT, Phys. Rev. D 82 (2010) 043522 [arXiv:1003.2595] [SPIRES].

    ADS  Google Scholar 

  36. J. McDonald, N. Sahu and U. Sarkar, Seesaw at Collider, Lepton Asymmetry and Singlet Scalar Dark Matter, JCAP 04 (2008) 037 [arXiv:0711.4820] [SPIRES].

    ADS  Google Scholar 

  37. LEP Working Group for Higgs boson searches collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [SPIRES].

    ADS  Google Scholar 

  38. J. Alcaraz, Precision Electroweak Measurements and Constraints on the Standard Model, arXiv:0911.2604 [SPIRES].

  39. CDF and D0 collaboration, T. Aaltonen et al., Combination of Tevatron searches for the standard model Higgs boson in the W+W-decay mode, Phys. Rev. Lett. 104 (2010) 061802 [arXiv:1001.4162] [SPIRES].

    Article  ADS  Google Scholar 

  40. J. Edsjo and P. Gondolo, Neutralino Relic Density including Coannihilations, Phys. Rev. D 56 (1997) 1879 [hep-ph/9704361] [SPIRES].

    ADS  Google Scholar 

  41. E.W. Kolb and M.S. Turner, The Early Universe Addison-Wesley, Reading, MA U.S.A. (1990).

    MATH  Google Scholar 

  42. P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991) 145 [SPIRES].

    Article  ADS  Google Scholar 

  43. D. Feldman, Z. Liu and P. Nath, PAMELA Positron Excess as a Signal from the Hidden Sector, Phys. Rev. D 79 (2009) 063509 [arXiv:0810.5762] [SPIRES].

    ADS  Google Scholar 

  44. M. Ibe, H. Murayama and T.T. Yanagida, Breit-Wigner Enhancement of Dark Matter Annihilation, Phys. Rev. D 79 (2009) 095009 [arXiv:0812.0072] [SPIRES].

    ADS  Google Scholar 

  45. W.-L. Guo and Y.-L. Wu, Enhancement of Dark Matter Annihilation via Breit-Wigner Resonance, Phys. Rev. D 79 (2009) 055012 [arXiv:0901.1450] [SPIRES].

    ADS  Google Scholar 

  46. J.R. Ellis, A. Ferstl and K.A. Olive, Re-evaluation of the elastic scattering of supersymmetric dark matter, Phys. Lett. B 481 (2000) 304 [hep-ph/0001005] [SPIRES].

    ADS  Google Scholar 

  47. XENON collaboration, J. Angle et al., First Results from the XENON10 Dark Matter Experiment at the Gran Sasso National Laboratory, Phys. Rev. Lett. 100 (2008) 021303 [arXiv:0706.0039] [SPIRES].

    Article  ADS  Google Scholar 

  48. Xenon collaboration, E. Aprile, The Xenon100 Dark Matter Experiment At Lngs: Status And Sensitivity, J. Phys. Conf. Ser. 203 (2010) 012005.

    Article  ADS  Google Scholar 

  49. J. Cooley, New Results from the Final Runs of the CDMS II Experiment, SLAC seminar on Dec. 17, 2009.

  50. L. Hsu, New Results from the Cryogenic Dark Matter Search, Fermilab seminar on Dec. 17, 2009.

  51. E. Aprile, XENON1T: a ton scale Dark Matter Experiment, presented at UCLA Dark Matter 2010, February 26, 2010.

  52. K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [SPIRES].

    ADS  Google Scholar 

  53. O. Adriani et al., A new measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation, Phys. Rev. Lett. 102 (2009) 051101 [arXiv:0810.4994] [SPIRES].

    Article  ADS  Google Scholar 

  54. http://ams.cern.ch/.

  55. ATLAS collaboration, M. Warsinsky, ATLAS discovery potential for Higgs bosons beyond the standard model, J. Phys. Conf. Ser. 110 (2008) 072046.

    Article  ADS  Google Scholar 

  56. F. Petriello and K.M. Zurek, DAMA and WIMP dark matter, JHEP 09 (2008) 047 [arXiv:0806.3989] [SPIRES].

    Article  ADS  Google Scholar 

  57. C. Savage, G. Gelmini, P. Gondolo and K. Freese, Compatibility of DAMA/LIBRA dark matter detection with other searches, JCAP 04 (2009) 010 [arXiv:0808.3607] [SPIRES].

    ADS  Google Scholar 

  58. XENON100 collaboration, E. Aprile et al., First Dark Matter Results from the XENON100 Experiment, Phys. Rev. Lett. 105 (2010) 131302 [arXiv:1005.0380] [SPIRES].

    Article  ADS  Google Scholar 

  59. J.I. Collar and D.N. McKinsey, Comments on ’First Dark Matter Results from the XENON100 Experiment’, arXiv:1005.0838 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Lei Guo.

Additional information

ArXiv ePrint: 1006.2518

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, WL., Wu, YL. The real singlet scalar dark matter model. J. High Energ. Phys. 2010, 83 (2010). https://doi.org/10.1007/JHEP10(2010)083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2010)083

Keywords

Navigation