Skip to main content
Log in

Implications of flavor dynamics for fermion triplet leptogenesis

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We analyze the importance of flavor effects in models in which leptogenesis proceeds via the decay of Majorana electroweak triplets. We find that depending on the relative strengths of gauge and Yukawa reactions the BL asymmetry can be sizably enhanced, exceeding in some cases an order of magnitude level. We also discuss the impact that such effects can have for TeV-scale triplets showing that as long as the BL asymmetry is produced by the dynamics of the lightest such triplet they are negligible, but open the possibility for scenarios in which the asymmetry is generated above the TeV scale by heavier states, possibly surviving the TeV triplet related washouts. We investigate these cases and discuss how they can be disentangled by using Majorana triplet collider observables and, in the case of minimal type III see-saw models even through lepton flavor violation observables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WMAP collaboration, G. Hinshaw et al., Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations:Data Processing, Sky Maps, & Basic Results, Astrophys. J. Suppl. 180 (2009) 225 [arXiv:0803.0732] [SPIRES].

    Article  ADS  Google Scholar 

  2. A.D. Sakharov, Violation of CP Invariance, c Asymmetry and Baryon Asymmetry of the Universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [JETP Lett. 5 (1967 SOPUA,34,392-393.1991 UFNAA,161,61-64.1991) 24]. [SPIRES].

    Google Scholar 

  3. A.D. Dolgov, NonGUT baryogenesis, Phys. Rept. 222 (1992) 309 [SPIRES].

    Article  ADS  Google Scholar 

  4. V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. B 155 (1985) 36 [SPIRES].

    ADS  Google Scholar 

  5. P. Minkowski, μ → eγ at a Rate of One Out of 1-Billion Muon Decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].

    ADS  Google Scholar 

  6. T. Yanagida, Horizontal Symmetry And Masses Of Neutrinos, in proceedings of Workshop on Unified Theory and Baryon number in the Universe, O. Sawada and A. Sugamoto eds., KEK, Tsukuba, (1979) p.95.

    Google Scholar 

  7. M. Gell-Mann, P. Ramond and R. Slansky, in Supergravity, P. van Niewenhuizen and D.Z. Freedman eds., North Holland, Amsterdam (1980) p.315.

    Google Scholar 

  8. P. Ramond, The Family Group in Grand Unified Theories, hep-ph/9809459 [SPIRES].

  9. S. L. Glashow, Particle Physics Far From The High-Energy Frontier in Quarks and Leptons, Cargèse lectures, M. Lévy ed., Plenum, New York (1980) p. 707.

    Google Scholar 

  10. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].

    Article  ADS  Google Scholar 

  11. M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [SPIRES].

    ADS  Google Scholar 

  12. S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [SPIRES].

    Article  ADS  Google Scholar 

  13. R. Barbieri, P. Creminelli, A. Strumia and N. Tetradis, Baryogenesis through leptogenesis, Nucl. Phys. B 575 (2000) 61 [hep-ph/9911315] [SPIRES].

    Article  ADS  Google Scholar 

  14. G.F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM, Nucl. Phys. B 685 (2004) 89 [hep-ph/0310123] [SPIRES].

    Article  ADS  Google Scholar 

  15. A. Abada et al., Flavour matters in leptogenesis, JHEP 09 (2006) 010 [hep-ph/0605281] [SPIRES].

    Article  ADS  Google Scholar 

  16. E. Nardi, Y. Nir, E. Roulet and J. Racker, The importance of flavor in leptogenesis, JHEP 01 (2006) 164 [hep-ph/0601084] [SPIRES].

    Article  ADS  Google Scholar 

  17. A. Abada, S. Davidson, F.-X. Josse-Michaux, M. Losada and A. Riotto, Flavour Issues in Leptogenesis, JCAP 04 (2006) 004 [hep-ph/0601083] [SPIRES].

    ADS  Google Scholar 

  18. E. Nardi, Y. Nir, J. Racker and E. Roulet, On Higgs and sphaleron effects during the leptogenesis era, JHEP 01 (2006) 068 [hep-ph/0512052] [SPIRES].

    Article  ADS  Google Scholar 

  19. P. Di Bari, Seesaw geometry and leptogenesis, Nucl. Phys. B 727 (2005) 318 [hep-ph/0502082] [SPIRES].

    ADS  Google Scholar 

  20. G. Engelhard, Y. Grossman, E. Nardi and Y. Nir, The importance of N2 leptogenesis, Phys. Rev. Lett. 99 (2007) 081802 [hep-ph/0612187] [SPIRES].

    Article  ADS  Google Scholar 

  21. O. Vives, Flavor dependence of CP asymmetries and thermal leptogenesis with strong right-handed neutrino mass hierarchy, Phys. Rev. D 73 (2006) 073006 [hep-ph/0512160] [SPIRES].

    ADS  Google Scholar 

  22. S. Antusch, P. Di Bari, D.A. Jones and S.F. King, A fuller flavour treatment of N 2 -dominated leptogenesis, arXiv:1003.5132 [SPIRES].

  23. J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [SPIRES].

    ADS  Google Scholar 

  24. G. Lazarides, Q. Shafi and C. Wetterich, Proton Lifetime and Fermion Masses in an SO(10) Model, Nucl. Phys. B 181 (1981) 287 [SPIRES].

    Article  ADS  Google Scholar 

  25. R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [SPIRES].

    ADS  Google Scholar 

  26. C. Wetterich, Neutrino Masses and the Scale of B-L Violation, Nucl. Phys. B 187 (1981) 343 [SPIRES].

    Article  ADS  Google Scholar 

  27. R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [SPIRES].

    Google Scholar 

  28. T. Hambye and G. Senjanović, Consequences of triplet seesaw for leptogenesis, Phys. Lett. B 582 (2004) 73 [hep-ph/0307237] [SPIRES].

    ADS  Google Scholar 

  29. S. Antusch and S.F. King, Type II leptogenesis and the neutrino mass scale, Phys. Lett. B 597 (2004) 199 [hep-ph/0405093] [SPIRES].

    ADS  Google Scholar 

  30. S. Antusch, Flavour-dependent type-II leptogenesis, Phys. Rev. D 76 (2007) 023512 [arXiv:0704.1591] [SPIRES].

    ADS  Google Scholar 

  31. T. Hambye, Y. Lin, A. Notari, M. Papucci and A. Strumia, Constraints on neutrino masses from leptogenesis models, Nucl. Phys. B 695 (2004) 169 [hep-ph/0312203] [SPIRES].

    Article  ADS  Google Scholar 

  32. W. Fischler and R. Flauger, Neutrino Masses, Leptogenesis and Unification in the Absence of Low Energy Supersymmetry, JHEP 09 (2008) 020 [arXiv:0805.3000] [SPIRES].

    Article  ADS  Google Scholar 

  33. A. Strumia, Sommerfeld corrections to type-II and III leptogenesis, Nucl. Phys. B 809 (2009) 308 [arXiv:0806.1630] [SPIRES].

    Article  ADS  Google Scholar 

  34. A. Pilaftsis and T.E.J. Underwood, Resonant leptogenesis, Nucl. Phys. B 692 (2004) 303 [hep-ph/0309342] [SPIRES].

    Article  ADS  Google Scholar 

  35. A. Pilaftsis and T.E.J. Underwood, Electroweak-scale resonant leptogenesis, Phys. Rev. D 72 (2005) 113001 [hep-ph/0506107] [SPIRES].

    ADS  Google Scholar 

  36. T. Schwetz, M.A. Tortola and J.W.F. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016] [SPIRES].

    Article  ADS  Google Scholar 

  37. J.A. Casas and A. Ibarra, Oscillating neutrinos and μ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [SPIRES].

    Article  ADS  Google Scholar 

  38. L. Covi, E. Roulet and F. Vissani, CP violating decays in leptogenesis scenarios, Phys. Lett. B 384 (1996) 169 [hep-ph/9605319] [SPIRES].

    ADS  Google Scholar 

  39. E. Nardi, J. Racker and E. Roulet, CP violation in scatterings, three body processes and the Boltzmann equations for leptogenesis, JHEP 09 (2007) 090 [arXiv:0707.0378] [SPIRES].

    Article  ADS  Google Scholar 

  40. J.A. Harvey and M.S. Turner, Cosmological baryon and lepton number in the presence of electroweak fermion number violation, Phys. Rev. D 42 (1990) 3344 [SPIRES].

    ADS  Google Scholar 

  41. Y. Burnier, M. Laine and M. Shaposhnikov, Baryon and lepton number violation rates across the electroweak crossover, JCAP 02 (2006) 007 [hep-ph/0511246] [SPIRES].

    ADS  Google Scholar 

  42. R. Franceschini, T. Hambye and A. Strumia, Type-III see-saw at LHC, Phys. Rev. D 78 (2008) 033002 [arXiv:0805.1613] [SPIRES].

    ADS  Google Scholar 

  43. F. del Aguila and J.A. Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl. Phys. B 813 (2009) 22 [arXiv:0808.2468] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  44. A. Arhrib et al., Collider Signatures for Heavy Lepton Triplet in Type I+III Seesaw, Phys. Rev. D 82 (2010) 053004 [arXiv:0904.2390] [SPIRES].

    ADS  Google Scholar 

  45. ILC collaboration, T. Behnke, (Ed. ) et al., ILC Reference Design Report Volume 4 - Detectors, arXiv:0712.2356 [SPIRES].

  46. The ATLAS collaboration, G. Aad et al., Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics, arXiv:0901.0512 [SPIRES].

  47. B. Bajc and G. Senjanović, Seesaw at LHC, JHEP 08 (2007) 014 [hep-ph/0612029] [SPIRES].

    Article  ADS  Google Scholar 

  48. B. Bajc, M. Nemevšek and G. Senjanović, Probing seesaw at LHC, Phys. Rev. D 76 (2007) 055011 [hep-ph/0703080] [SPIRES].

    ADS  Google Scholar 

  49. S. Blanchet and P. Fileviez Perez, Baryogenesis via Leptogenesis in Adjoint SU(5), JCAP 08 (2008) 037 [arXiv:0807.3740] [SPIRES].

    ADS  Google Scholar 

  50. A. Ibarra and G.G. Ross, Neutrino phenomenology: The case of two right handed neutrinos, Phys. Lett. B 591 (2004) 285 [hep-ph/0312138] [SPIRES].

    Article  ADS  Google Scholar 

  51. J.F. Kamenik and M. Nemevšek, Lepton flavor violation in type-I + III seesaw, JHEP 11 (2009) 023 [arXiv:0908.3451] [SPIRES].

    Article  ADS  Google Scholar 

  52. C. Ankenbrandt et al., Using the Fermilab proton source for a muon to electron conversion experiment, physics/0611124.

  53. PRISM/PRIME group, An Experimental Search for μ e Conversion at a Sensitivity of 10−16 with a Slow-Extracted Bunched Beam, http://j-parc.jp/NuclPart/pac_0701/pdf/P21-LOI.pdf.

  54. PRISM/PRIME group, An Experimental Search for A μ e Conversion at Sensitivity of the Order of 10 18 with a Highly Intense Muon Source: PRISM, http://j-parc.jp/NuclPart/pac_0606/pdf/p20-Kuno.pdf.

  55. J.-M. Frere, T. Hambye and G. Vertongen, Is leptogenesis falsifiable at LHC?, JHEP 01 (2009) 051 [arXiv:0806.0841] [SPIRES].

    Article  ADS  Google Scholar 

  56. S. Blanchet, Z. Chacko and R.N. Mohapatra, Neutrino Mass Seesaw at the Weak Scale, the Baryon Asymmetry and the LHC, Phys. Rev. D 80 (2009) 085002 [arXiv:0812.3837] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jernej F. Kamenik.

Additional information

ArXiv ePrint: 1007.1907

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aristizabal Sierra, D., Kamenik, J.F. & Nemevšek, M. Implications of flavor dynamics for fermion triplet leptogenesis. J. High Energ. Phys. 2010, 36 (2010). https://doi.org/10.1007/JHEP10(2010)036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2010)036

Keywords

Navigation