Advertisement

Journal of High Energy Physics

, 2016:166 | Cite as

Emergent horizons and causal structures in holography

  • Avik Banerjee
  • Arnab Kundu
  • Sandipan Kundu
Open Access
Regular Article - Theoretical Physics

Abstract

The open string metric arises kinematically in studying fluctuations of open string degrees of freedom on a D-brane. An observer, living on a probe D-brane, can send signals through the spacetime by using such fluctuations on the probe, that propagate in accordance with a metric which is conformal to the open string metric. Event horizons can emerge in the open string metric when one considers a D-brane with an electric field on its worldvolume. Here, we emphasize the role of and investigate, in details, the causal structure of the resulting open string event horizon and demonstrate, among other things, its close similarities to an usual black hole event horizon in asymptotically AdS-spaces. To that end, we analyze relevant geodesics, Penrose diagrams and various causal holographic observables for a given open string metric. For analytical control, most of our calculations are performed in an asymptotically AdS3-background, however, we argue that the physics is qualitatively the same in higher dimensions. We also discuss how this open string metric arises from an underlying D-brane configuration in string theory.

Keywords

AdS-CFT Correspondence Gauge-gravity correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L. Fidkowski, V. Hubeny, M. Kleban and S. Shenker, The black hole singularity in AdS/CFT, JHEP 02 (2004) 014 [hep-th/0306170] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    V.E. Hubeny, M. Rangamani and S.F. Ross, Causal structures and holography, JHEP 07 (2005) 037 [hep-th/0504034] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    V.E. Hubeny, H. Liu and M. Rangamani, Bulk-cone singularities & signatures of horizon formation in AdS/CFT, JHEP 01 (2007) 009 [hep-th/0610041] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    V.E. Hubeny, Extremal surfaces as bulk probes in AdS/CFT, JHEP 07 (2012) 093 [arXiv:1203.1044] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    A. Kundu and S. Kundu, Steady-state physics, effective temperature dynamics in holography, Phys. Rev. D 91 (2015) 046004 [arXiv:1307.6607] [INSPIRE].ADSGoogle Scholar
  7. [7]
    G.W. Gibbons, Aspects of Born-Infeld theory and string/M theory, Rev. Mex. Fis. 49S1 (2003) 19 [AIP Conf. Proc. 589 (2001) 324] [hep-th/0106059] [INSPIRE].
  8. [8]
    D. Mateos, R.C. Myers and R.M. Thomson, Holographic phase transitions with fundamental matter, Phys. Rev. Lett. 97 (2006) 091601 [hep-th/0605046] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    T. Albash, V.G. Filev, C.V. Johnson and A. Kundu, A topology-changing phase transition and the dynamics of flavour, Phys. Rev. D 77 (2008) 066004 [hep-th/0605088] [INSPIRE].ADSGoogle Scholar
  10. [10]
    A. Kundu, J. Pedraza, A. Rovai and J. Sonner, Open quantum systems in holography, in progress.Google Scholar
  11. [11]
    M.S. Alam, V.S. Kaplunovsky and A. Kundu, Chiral symmetry breaking and external fields in the Kuperstein-Sonnenschein model, JHEP 04 (2012) 111 [arXiv:1202.3488] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    A. Banerjee, A. Kundu and S. Kundu, Flavour fields in steady state: stress tensor and free energy, JHEP 02 (2016) 102 [arXiv:1512.05472] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    C. Barcelo, S. Liberati and M. Visser, Analogue gravity, Living Rev. Rel. 8 (2005) 12 [Living Rev. Rel. 14 (2011) 3] [gr-qc/0505065] [INSPIRE].
  14. [14]
    M. Visser, Acoustic black holes: horizons, ergospheres and Hawking radiation, Class. Quant. Grav. 15 (1998) 1767 [gr-qc/9712010] [INSPIRE].
  15. [15]
    S. Corley and T. Jacobson, Black hole lasers, Phys. Rev. D 59 (1999) 124011 [hep-th/9806203] [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    A. Kundu, Effective temperature in steady-state dynamics from holography, JHEP 09 (2015) 042 [arXiv:1507.00818] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    K.-Y. Kim, J.P. Shock and J. Tarrio, The open string membrane paradigm with external electromagnetic fields, JHEP 06 (2011) 017 [arXiv:1103.4581] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    J. Sonner and A.G. Green, Hawking radiation and non-equilibrium quantum critical current noise, Phys. Rev. Lett. 109 (2012) 091601 [arXiv:1203.4908] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. Sonner, Holographic Schwinger effect and the geometry of entanglement, Phys. Rev. Lett. 111 (2013) 211603 [arXiv:1307.6850] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal field theory, hep-th/9808016 [INSPIRE].
  22. [22]
    J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    V. Balasubramanian and S.F. Ross, Holographic particle detection, Phys. Rev. D 61 (2000) 044007 [hep-th/9906226] [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    A. Karch and A. O’Bannon, Metallic AdS/CFT, JHEP 09 (2007) 024 [arXiv:0705.3870] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    T. Albash, V.G. Filev, C.V. Johnson and A. Kundu, Quarks in an external electric field in finite temperature large-N gauge theory, JHEP 08 (2008) 092 [arXiv:0709.1554] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    W. Fischler and S. Kundu, Strongly coupled gauge theories: high and low temperature behavior of non-local observables, JHEP 05 (2013) 098 [arXiv:1212.2643] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    S. Kundu and J.F. Pedraza, Aspects of holographic entanglement at finite temperature and chemical potential, JHEP 08 (2016) 177 [arXiv:1602.07353] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. Gao and R.M. Wald, Theorems on gravitational time delay and related issues, Class. Quant. Grav. 17 (2000) 4999 [gr-qc/0007021] [INSPIRE].
  30. [30]
    V.E. Hubeny and M. Rangamani, Causal holographic information, JHEP 06 (2012) 114 [arXiv:1204.1698] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The gravity dual of a density matrix, Class. Quant. Grav. 29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    S.A. Gentle and C. Keeler, On the reconstruction of Lifshitz spacetimes, JHEP 03 (2016) 195 [arXiv:1512.04538] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    G. Mandal, A review of the D1/D5 system and five-dimensional black hole from supergravity and brane viewpoint, hep-th/0002184 [INSPIRE].
  34. [34]
    P. Kraus, Lectures on black holes and the AdS 3 /CFT 2 correspondence, Lect. Notes Phys. 755 (2008) 193 [hep-th/0609074] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  35. [35]
    J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP 12 (1997) 002 [hep-th/9711053] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Theory DivisionSaha Institute of Nuclear PhysicsKolkataIndia
  2. 2.Homi Bhaba National Institute, Training School ComplexMumbaiIndia
  3. 3.Department of PhysicsCornell UniversityIthacaU.S.A.

Personalised recommendations