Journal of High Energy Physics

, 2016:151 | Cite as

Differential Higgs boson pair production at next-to-next-to-leading order in QCD

  • Daniel de Florian
  • Massimiliano Grazzini
  • Catalin Hanga
  • Stefan Kallweit
  • Jonas M. Lindert
  • Philipp Maierhöfer
  • Javier Mazzitelli
  • Dirk Rathlev
Open Access
Regular Article - Theoretical Physics


We report on the first fully differential calculation for double Higgs boson production through gluon fusion in hadron collisions up to next-to-next-to-leading order (NNLO) in QCD perturbation theory. The calculation is performed in the heavy-top limit of the Standard Model, and in the phenomenological results we focus on pp collisions at \( \sqrt{s}=14 \) TeV. We present differential distributions through NNLO for various observables including the transverse-momentum and rapidity distributions of the two Higgs bosons. NNLO corrections are at the level of 10%-25% with respect to the next-to-leading order (NLO) prediction with a residual scale uncertainty of 5%-15% and an overall mild phase-space dependence. Only at NNLO the perturbative expansion starts to converge yielding overlapping scale uncertainty bands between NNLO and NLO in most of the phase-space. The calculation includes NLO predictions for ppHH + jet + X. Corrections to the corresponding distributions exceed 50% with a residual scale dependence of 20%-30%.


NLO Computations QCD Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    E.W.N. Glover and J.J. van der Bij, Higgs boson pair production via gluon fusion, Nucl. Phys. B 309 (1988) 282 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    O.J.P. Eboli, G.C. Marques, S.F. Novaes and A.A. Natale, TWIN Higgs boson production, Phys. Lett. B 197 (1987) 269 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    T. Plehn, M. Spira and P.M. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys. B 479 (1996) 46 [Erratum ibid. B 531 (1998) 655] [hep-ph/9603205] [INSPIRE].
  6. [6]
    J. Baglio, A. Djouadi, R. Gröber, M.M. Mühlleitner, J. Quevillon and M. Spira, The measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP 04 (2013) 151 [arXiv:1212.5581] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    W. Yao, Studies of measuring Higgs self-coupling with \( HH\to b\overline{b}\gamma \gamma \) at the future hadron colliders, arXiv:1308.6302 [INSPIRE].
  8. [8]
    V. Barger, L.L. Everett, C.B. Jackson and G. Shaughnessy, Higgs-Pair Production and Measurement of the Triscalar Coupling at LHC(8,14), Phys. Lett. B 728 (2014) 433 [arXiv:1311.2931] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M.J. Dolan, C. Englert and M. Spannowsky, Higgs self-coupling measurements at the LHC, JHEP 10 (2012) 112 [arXiv:1206.5001] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production at the LHC in the \( b\overline{b}{W}^{+}{W}^{-} \) channel, Phys. Rev. D 87 (2013) 011301 [arXiv:1209.1489] [INSPIRE].ADSGoogle Scholar
  11. [11]
    D.E. Ferreira de Lima, A. Papaefstathiou and M. Spannowsky, Standard model Higgs boson pair production in the \( \left(b\overline{b}\right)\left(b\overline{b}\right) \) final state, JHEP 08 (2014) 030 [arXiv:1404.7139] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    J.K. Behr, D. Bortoletto, J.A. Frost, N.P. Hartland, C. Issever and J. Rojo, Boosting Higgs pair production in the \( b\overline{b}b\overline{b} \) final state with multivariate techniques, Eur. Phys. J. C 76 (2016) 386 [arXiv:1512.08928] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    ATLAS collaboration, Search for Higgs boson pair production in the \( b\overline{b}b\overline{b} \) final state from pp collisions at \( \sqrt{s}=8 \) TeVwith the ATLAS detector, Eur. Phys. J. C 75 (2015) 412 [arXiv:1506.00285] [INSPIRE].
  14. [14]
    ATLAS collaboration, Search For Higgs Boson Pair Production in the \( \gamma \gamma b\overline{b} \) Final State using pp Collision Data at \( \sqrt{s}=8 \) TeV from the ATLAS Detector, Phys. Rev. Lett. 114 (2015) 081802 [arXiv:1406.5053] [INSPIRE].
  15. [15]
    ATLAS collaboration, Searches for Higgs boson pair production in the hhbbτ τ, γγW W , γγbb, bbbb channels with the ATLAS detector, Phys. Rev. D 92 (2015) 092004 [arXiv:1509.04670] [INSPIRE].
  16. [16]
    CMS collaboration, Search for resonant pair production of Higgs bosons decaying to two bottom quark-antiquark pairs in proton-proton collisions at 8 TeV, Phys. Lett. B 749 (2015) 560 [arXiv:1503.04114] [INSPIRE].
  17. [17]
    CMS collaboration, Search for resonant HH production in 2gamma+2b channel, CMS-PAS-HIG-13-032 (2013).
  18. [18]
    CMS collaboration, Search for two Higgs bosons in final states containing two photons and two bottom quarks, Submitted to: Phys. Rev. D (2016) [arXiv:1603.06896] [INSPIRE].
  19. [19]
    S. Dawson, A. Ismail and I. Low, What’s in the loop? The anatomy of double Higgs production, Phys. Rev. D 91 (2015) 115008 [arXiv:1504.05596] [INSPIRE].ADSGoogle Scholar
  20. [20]
    C.O. Dib, R. Rosenfeld and A. Zerwekh, Double Higgs production and quadratic divergence cancellation in little Higgs models with T parity, JHEP 05 (2006) 074 [hep-ph/0509179] [INSPIRE].
  21. [21]
    R. Grober and M. Muhlleitner, Composite Higgs Boson Pair Production at the LHC, JHEP 06 (2011) 020 [arXiv:1012.1562] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    R. Contino, M. Ghezzi, M. Moretti, G. Panico, F. Piccinini and A. Wulzer, Anomalous Couplings in Double Higgs Production, JHEP 08 (2012) 154 [arXiv:1205.5444] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    C.-R. Chen and I. Low, Double take on new physics in double Higgs boson production, Phys. Rev. D 90 (2014) 013018 [arXiv:1405.7040] [INSPIRE].ADSGoogle Scholar
  24. [24]
    V. Barger, L.L. Everett, C.B. Jackson, A.D. Peterson and G. Shaughnessy, New physics in resonant production of Higgs boson pairs, Phys. Rev. Lett. 114 (2015) 011801 [arXiv:1408.0003] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs Boson self-coupling measurements using ratios of cross sections, JHEP 06 (2013) 016 [arXiv:1301.3492] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S. Borowka et al., Higgs boson pair production in gluon fusion at next-to-leading order with full top-quark mass dependence, Phys. Rev. Lett. 117 (2016) 012001 [arXiv:1604.06447] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J. Grigo, K. Melnikov and M. Steinhauser, Virtual corrections to Higgs boson pair production in the large top quark mass limit, Nucl. Phys. B 888 (2014) 17 [arXiv:1408.2422] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    J. Grigo and J. Hoff, Mass-corrections to double-Higgs production & TopoID, PoS(LL2014)030 [arXiv:1407.1617] [INSPIRE].
  29. [29]
    J. Grigo, J. Hoff, K. Melnikov and M. Steinhauser, On the Higgs boson pair production at the LHC, Nucl. Phys. B 875 (2013) 1 [arXiv:1305.7340] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    J. Grigo, J. Hoff and M. Steinhauser, Higgs boson pair production: top quark mass effects at NLO and NNLO, Nucl. Phys. B 900 (2015) 412 [arXiv:1508.00909] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    G. Degrassi, P.P. Giardino and R. Gröber, On the two-loop virtual QCD corrections to Higgs boson pair production in the Standard Model, Eur. Phys. J. C 76 (2016) 411 [arXiv:1603.00385] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs boson pair production at hadron colliders: QCD corrections, Phys. Rev. D 58 (1998) 115012 [hep-ph/9805244] [INSPIRE].
  33. [33]
    D. de Florian and J. Mazzitelli, Two-loop virtual corrections to Higgs pair production, Phys. Lett. B 724 (2013) 306 [arXiv:1305.5206] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  34. [34]
    D. de Florian and J. Mazzitelli, Higgs Boson Pair Production at Next-to-Next-to-Leading Order in QCD, Phys. Rev. Lett. 111 (2013) 201801 [arXiv:1309.6594] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    D.Y. Shao, C.S. Li, H.T. Li and J. Wang, Threshold resummation effects in Higgs boson pair production at the LHC, JHEP 07 (2013) 169 [arXiv:1301.1245] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    D. de Florian and J. Mazzitelli, Higgs pair production at next-to-next-to-leading logarithmic accuracy at the LHC, JHEP 09 (2015) 053 [arXiv:1505.07122] [INSPIRE].CrossRefGoogle Scholar
  37. [37]
    F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production in the D = 6 extension of the SM, JHEP 04 (2015) 167 [arXiv:1410.3471] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    R. Gröber, M. Mühlleitner, M. Spira and J. Streicher, NLO QCD Corrections to Higgs Pair Production including Dimension-6 Operators, JHEP 09 (2015) 092 [arXiv:1504.06577] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    F. Maltoni, E. Vryonidou and M. Zaro, Top-quark mass effects in double and triple Higgs production in gluon-gluon fusion at NLO, JHEP 11 (2014) 079 [arXiv:1408.6542] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    R. Frederix et al., Higgs pair production at the LHC with NLO and parton-shower effects, Phys. Lett. B 732 (2014) 142 [arXiv:1401.7340] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    Q. Li, Q.-S. Yan and X. Zhao, Higgs Pair Production: Improved Description by Matrix Element Matching, Phys. Rev. D 89 (2014) 033015 [arXiv:1312.3830] [INSPIRE].ADSGoogle Scholar
  42. [42]
    P. Maierhöfer and A. Papaefstathiou, Higgs Boson pair production merged to one jet, JHEP 03 (2014) 126 [arXiv:1401.0007] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].
  44. [44]
    F. Cascioli, J. Lindert, P. Maierhöfer and S. Pozzorini, OpenLoops, one-loop generator, publicly available at
  45. [45]
    A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].
  47. [47]
    M. Krämer, E. Laenen and M. Spira, Soft gluon radiation in Higgs boson production at the LHC, Nucl. Phys. B 511 (1998) 523 [hep-ph/9611272] [INSPIRE].
  48. [48]
    K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Hadronic Higgs decay to order alpha-S 4, Phys. Rev. Lett. 79 (1997) 353 [hep-ph/9705240] [INSPIRE].
  49. [49]
    S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Universality of transverse-momentum resummation and hard factors at the NNLO, Nucl. Phys. B 881 (2014) 414 [arXiv:1311.1654] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    S. Catani and M. Grazzini, Higgs Boson Production at Hadron Colliders: Hard-Collinear Coefficients at the NNLO, Eur. Phys. J. C 72 (2012) 2013 [Erratum ibid. C 72 (2012) 2132] [arXiv:1106.4652] [INSPIRE].
  51. [51]
    T. Gehrmann, T. Lüebbert and L.L. Yang, Calculation of the transverse parton distribution functions at next-to-next-to-leading order, JHEP 06 (2014) 155 [arXiv:1403.6451] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    F. Cascioli, P. Maierhöfer and S. Pozzorini, Scattering Amplitudes with Open Loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    R.P. Kauffman, S.V. Desai and D. Risal, Production of a Higgs boson plus two jets in hadronic collisions, Phys. Rev. D 55 (1997) 4005 [Erratum ibid. D 58 (1998) 119901] [hep-ph/9610541] [INSPIRE].
  54. [54]
    B.A. Kniehl and M. Spira, Low-energy theorems in Higgs physics, Z. Phys. C 69 (1995) 77 [hep-ph/9505225] [INSPIRE].
  55. [55]
    B. Page and R. Pittau, R 2 vertices for the effective ggH theory, JHEP 09 (2013) 078 [arXiv:1307.6142] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].
  57. [57]
    G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: A Program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    A. van Hameren, OneLOop: For the evaluation of one-loop scalar functions, Comput. Phys. Commun. 182 (2011) 2427 [arXiv:1007.4716] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  59. [59]
    C.F. Berger, V. Del Duca and L.J. Dixon, Recursive Construction of Higgs-Plus-Multiparton Loop Amplitudes: The Last of the Phi-nite Loop Amplitudes, Phys. Rev. D 74 (2006) 094021 [Erratum ibid. D 76 (2007) 099901] [hep-ph/0608180] [INSPIRE].
  60. [60]
    S.D. Badger and E.W.N. Glover, One-loop helicity amplitudes for Hgluons: The All-minus configuration, Nucl. Phys. Proc. Suppl. 160 (2006) 71 [hep-ph/0607139] [INSPIRE].
  61. [61]
    S.D. Badger, E.W.N. Glover and K. Risager, One-loop phi-MHV amplitudes using the unitarity bootstrap, JHEP 07 (2007) 066 [arXiv:0704.3914] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    E.W.N. Glover, P. Mastrolia and C. Williams, One-loop phi-MHV amplitudes using the unitarity bootstrap: The General helicity case, JHEP 08 (2008) 017 [arXiv:0804.4149] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    S. Badger, E.W. Nigel Glover, P. Mastrolia and C. Williams, One-loop Higgs plus four gluon amplitudes: Full analytic results, JHEP 01 (2010) 036 [arXiv:0909.4475] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  64. [64]
    L.J. Dixon and Y. Sofianatos, Analytic one-loop amplitudes for a Higgs boson plus four partons, JHEP 08 (2009) 058 [arXiv:0906.0008] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  65. [65]
    S. Badger, J.M. Campbell, R.K. Ellis and C. Williams, Analytic results for the one-loop NMHV Hqqgg amplitude, JHEP 12 (2009) 035 [arXiv:0910.4481] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
  67. [67]
    J.M. Campbell, R.K. Ellis, R. Frederix, P. Nason, C. Oleari and C. Williams, NLO Higgs Boson Production Plus One and Two Jets Using the POWHEG BOX, MadGraph4 and MCFM, JHEP 07 (2012) 092 [arXiv:1202.5475] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    S. Alioli, P. Nason, C. Oleari and E. Re, NLO Higgs boson production via gluon fusion matched with shower in POWHEG, JHEP 04 (2009) 002 [arXiv:0812.0578] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    S. Catani, D. de Florian, M. Grazzini and P. Nason, Soft gluon resummation for Higgs boson production at hadron colliders, JHEP 07 (2003) 028 [hep-ph/0306211] [INSPIRE].
  70. [70]
    C. Anastasiou, S. Bühler, F. Herzog and A. Lazopoulos, Inclusive Higgs boson cross-section for the LHC at 8 TeV, JHEP 04 (2012) 004 [arXiv:1202.3638] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    R.V. Harlander, S. Liebler and H. Mantler, SusHi: A program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM, Comput. Phys. Commun. 184 (2013) 1605 [arXiv:1212.3249] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  72. [72]
    S. Catani and M.H. Seymour, The Dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett. B 378 (1996) 287 [hep-ph/9602277] [INSPIRE].
  73. [73]
    S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [hep-ph/9605323] [INSPIRE].
  74. [74]
    A. Denner et al., Standard Model input parameters for Higgs physics, LHCHXSWG-INT-2015-006 (2015).Google Scholar
  75. [75]
    J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  77. [77]
    S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].ADSGoogle Scholar
  78. [78]
    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    J. Gao and P. Nadolsky, A meta-analysis of parton distribution functions, JHEP 07 (2014) 035 [arXiv:1401.0013] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    S. Carrazza, S. Forte, Z. Kassabov, J.I. Latorre and J. Rojo, An Unbiased Hessian Representation for Monte Carlo PDFs, Eur. Phys. J. C 75 (2015) 369 [arXiv:1505.06736] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    M. Cacciari, G.P. Salam and G. Soyez, The Anti-k(t) jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Daniel de Florian
    • 1
  • Massimiliano Grazzini
    • 2
  • Catalin Hanga
    • 2
  • Stefan Kallweit
    • 3
  • Jonas M. Lindert
    • 2
  • Philipp Maierhöfer
    • 4
  • Javier Mazzitelli
    • 1
  • Dirk Rathlev
    • 5
  1. 1.International Center for Advanced Studies (ICAS), UNSAMBuenos AiresArgentina
  2. 2.Physik-InstitutUniversität ZürichZürichSwitzerland
  3. 3.PRISMA Cluster of Excellence, Institute of PhysicsJohannes Gutenberg UniversityMainzGermany
  4. 4.Physikalisches InstitutAlbert-Ludwigs-Universität FreiburgFreiburgGermany
  5. 5.Theory Group, Deutsches Elektronen-SynchrotronHamburgGermany

Personalised recommendations