Advertisement

Journal of High Energy Physics

, 2016:127 | Cite as

The monodromy of T-folds and T-fects

  • Dieter Lüst
  • Stefano Massai
  • Valentí Vall Camell
Open Access
Regular Article - Theoretical Physics

Abstract

We construct a class of codimension-2 solutions in supergravity that realize T-folds with arbitrary \( O\left(2,2,\mathbb{Z}\right) \) monodromy and we develop a geometric point of view in which the monodromy is identified with a product of Dehn twists of an auxiliary surface Σ fibered on a base \( \mathrm{\mathcal{B}} \). These defects, that we call T-fects, are identified by the monodromy of the mapping torus obtained by fibering Σ over the boundary of a small disk encircling a degeneration. We determine all possible local geometries by solving the corresponding Cauchy-Riemann equations, that imply the equations of motion for a semi-flat metric ansatz. We discuss the relation with the F-theoretic approach and we consider a generalization to the T-duality group of the heterotic theory with a Wilson line.

Keywords

Flux compactifications String Duality Superstring Vacua 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Witten, Geometric Langlands From Six Dimensions, arXiv:0905.2720 [INSPIRE].
  2. [2]
    E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    N. Halmagyi, C. Romelsberger and N.P. Warner, Inherited duality and quiver gauge theory, Adv. Theor. Math. Phys. 10 (2006) 159 [hep-th/0406143] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].
  6. [6]
    A. Klemm, W. Lerche, S. Yankielowicz and S. Theisen, Simple singularities and N = 2 supersymmetric Yang-Mills theory, Phys. Lett. B 344 (1995) 169 [hep-th/9411048] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    A. Klemm, W. Lerche, P. Mayr, C. Vafa and N.P. Warner, Selfdual strings and N = 2 supersymmetric field theory, Nucl. Phys. B 477 (1996) 746 [hep-th/9604034] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    A. Kumar and C. Vafa, U manifolds, Phys. Lett. B 396 (1997) 85 [hep-th/9611007] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    J.T. Liu and R. Minasian, U-branes and T 3 fibrations, Nucl. Phys. B 510 (1998) 538 [hep-th/9707125] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    J. McOrist, D.R. Morrison and S. Sethi, Geometries, Non-Geometries and Fluxes, Adv. Theor. Math. Phys. 14 (2010) 1515 [arXiv:1004.5447] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    A. Malmendier and D.R. Morrison, K3 surfaces, modular forms and non-geometric heterotic compactifications, Lett. Math. Phys. 105 (2015) 1085 [arXiv:1406.4873] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    J. Gu and H. Jockers, Nongeometric F-theory-heterotic duality, Phys. Rev. D 91 (2015) 086007 [arXiv:1412.5739] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    B.R. Greene, A.D. Shapere, C. Vafa and S.-T. Yau, Stringy Cosmic Strings and Noncompact Calabi-Yau Manifolds, Nucl. Phys. B 337 (1990) 1 [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    S. Hellerman, J. McGreevy and B. Williams, Geometric constructions of nongeometric string theories, JHEP 01 (2004) 024 [hep-th/0208174] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    C.M. Hull, A Geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. 54 (2003) 281 [math/0209099] [INSPIRE].
  18. [18]
    M. Gualtieri, Generalized complex geometry, math/0401221 [INSPIRE].
  19. [19]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    C. Hull and B. Zwiebach, Double Field Theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    M. Graña, R. Minasian, M. Petrini and D. Waldram, T-duality, Generalized Geometry and Non-Geometric Backgrounds, JHEP 04 (2009) 075 [arXiv:0807.4527] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, Non-Geometric Fluxes in Supergravity and Double Field Theory, Fortsch. Phys. 60 (2012) 1150 [arXiv:1204.1979] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    D. Andriot and A. Betz, Supersymmetry with non-geometric fluxes, or a β-twist in Generalized Geometry and Dirac operator, JHEP 04 (2015) 006 [arXiv:1411.6640] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  24. [24]
    F. Hassler and D. Lüst, Consistent Compactification of Double Field Theory on Non-geometric Flux Backgrounds, JHEP 05 (2014) 085 [arXiv:1401.5068] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    R. Blumenhagen, A. Deser, E. Plauschinn, F. Rennecke and C. Schmid, The Intriguing Structure of Non-geometric Frames in String Theory, Fortsch. Phys. 61 (2013) 893 [arXiv:1304.2784] [INSPIRE].MathSciNetMATHGoogle Scholar
  26. [26]
    R. Blumenhagen, F. Hassler and D. Lüst, Double Field Theory on Group Manifolds, JHEP 02 (2015) 001 [arXiv:1410.6374] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    R. Blumenhagen, P. du Bosque, F. Hassler and D. Lüst, Generalized Metric Formulation of Double Field Theory on Group Manifolds, JHEP 08 (2015) 056 [arXiv:1502.02428] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    D. Andriot, M. Larfors, D. Lüst and P. Patalong, A ten-dimensional action for non-geometric fluxes, JHEP 09 (2011) 134 [arXiv:1106.4015] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  29. [29]
    D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, A geometric action for non-geometric fluxes, Phys. Rev. Lett. 108 (2012) 261602 [arXiv:1202.3060] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  30. [30]
    R. Blumenhagen, A. Deser, E. Plauschinn and F. Rennecke, Non-geometric strings, symplectic gravity and differential geometry of Lie algebroids, JHEP 02 (2013) 122 [arXiv:1211.0030] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  31. [31]
    R. Blumenhagen, A. Deser, E. Plauschinn and F. Rennecke, A bi-invariant Einstein-Hilbert action for the non-geometric string, Phys. Lett. B 720 (2013) 215 [arXiv:1210.1591] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  32. [32]
    G. Aldazabal, D. Marques and C. Núñez, Double Field Theory: A Pedagogical Review, Class. Quant. Grav. 30 (2013) 163001 [arXiv:1305.1907] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  33. [33]
    O. Hohm, D. Lüst and B. Zwiebach, The Spacetime of Double Field Theory: Review, Remarks and Outlook, Fortsch. Phys. 61 (2013) 926 [arXiv:1309.2977] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  34. [34]
    C.M. Hull, Finite Gauge Transformations and Geometry in Double Field Theory, JHEP 04 (2015) 109 [arXiv:1406.7794] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    K. Lee, C. Strickland-Constable and D. Waldram, New gaugings and non-geometry, arXiv:1506.03457 [INSPIRE].
  36. [36]
    K. Kodaira, On compact analytic surfaces, I, Annals Math. 71 (1960) 111.MathSciNetMATHCrossRefGoogle Scholar
  37. [37]
    K. Kodaira, On compact analytic surfaces, II, Annals Math. 77 (1963) 563.MATHCrossRefGoogle Scholar
  38. [38]
    K. Kodaira, On compact analytic surfaces, III, Annals Math. 78 (1963) 1.MathSciNetMATHCrossRefGoogle Scholar
  39. [39]
    H. Ooguri and C. Vafa, Two-dimensional black hole and singularities of CY manifolds, Nucl. Phys. B 463 (1996) 55 [hep-th/9511164] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  40. [40]
    Y. Matsumoto and J.M. Montesinos-Amilibia, Pseudo-periodic Maps and Degeneration of Riemann Surfaces, Springer-Verlag, (2011).Google Scholar
  41. [41]
    A. Strominger, S.-T. Yau and E. Zaslow, Mirror symmetry is T duality, Nucl. Phys. B 479 (1996) 243 [hep-th/9606040] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  42. [42]
    D. Vegh and J. McGreevy, Semi-Flatland, JHEP 10 (2008) 068 [arXiv:0808.1569] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  43. [43]
    K. Becker and S. Sethi, Torsional Heterotic Geometries, Nucl. Phys. B 820 (2009) 1 [arXiv:0903.3769] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  44. [44]
    J. de Boer and M. Shigemori, Exotic Branes in String Theory, Phys. Rept. 532 (2013) 65 [arXiv:1209.6056] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    F. Hassler and D. Lüst, Non-commutative/non-associative IIA (IIB) Q- and R-branes and their intersections, JHEP 07 (2013) 048 [arXiv:1303.1413] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  46. [46]
    A. Chatzistavrakidis, F.F. Gautason, G. Moutsopoulos and M. Zagermann, Effective actions of nongeometric five-branes, Phys. Rev. D 89 (2014) 066004 [arXiv:1309.2653] [INSPIRE].ADSGoogle Scholar
  47. [47]
    E.A. Bergshoeff, J. Hartong, T. Ortín and D. Roest, Seven-branes and Supersymmetry, JHEP 02 (2007) 003 [hep-th/0612072] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  48. [48]
    C. Condeescu, I. Florakis, C. Kounnas and D. Lüst, Gauged supergravities and non-geometric Q/R-fluxes from asymmetric orbifold CFT‘s, JHEP 10 (2013) 057 [arXiv:1307.0999] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  49. [49]
    P. Mayr and S. Stieberger, Moduli dependence of one loop gauge couplings in (0, 2) compactifications, Phys. Lett. B 355 (1995) 107 [hep-th/9504129] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    D. Andriot and A. Betz, NS-branes, source corrected Bianchi identities and more on backgrounds with non-geometric fluxes, JHEP 07 (2014) 059 [arXiv:1402.5972] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    M. Park and M. Shigemori, Codimension-2 solutions in five-dimensional supergravity, JHEP 10 (2015) 011 [arXiv:1505.05169] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    T. Damour, M. Henneaux and H. Nicolai, Cosmological billiards, Class. Quant. Grav. 20 (2003) R145 [hep-th/0212256] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  53. [53]
    J. Brown, O.J. Ganor and C. Helfgott, M theory and E 10 : Billiards, branes and imaginary roots, JHEP 08 (2004) 063 [hep-th/0401053] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    X. Dong, B. Horn, E. Silverstein and G. Torroba, Micromanaging de Sitter holography, Class. Quant. Grav. 27 (2010) 245020 [arXiv:1005.5403] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  55. [55]
    C. Nayak, S.H. Simon, A. Stern, M. Freedman and S. Das Sarma, Non-Abelian anyons and topological quantum computation, Rev. Mod. Phys. 80 (2008) 1083 [arXiv:0707.1889]. [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  56. [56]
    A. Lerda and S. Sciuto, Anyons and quantum groups, Nucl. Phys. B 401 (1993) 613 [hep-th/9301100] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  57. [57]
    A. Dabholkar and C. Hull, Duality twists, orbifolds and fluxes, JHEP 09 (2003) 054 [hep-th/0210209] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    C.M. Hull and R.A. Reid-Edwards, Flux compactifications of string theory on twisted tori, Fortsch. Phys. 57 (2009) 862 [hep-th/0503114] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  59. [59]
    B. Wecht, Lectures on Nongeometric Flux Compactifications, Class. Quant. Grav. 24 (2007) S773 [arXiv:0708.3984] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  60. [60]
    M. Graña, R. Minasian, H. Triendl and T. Van Riet, Quantization problem in Scherk-Schwarz compactifications, Phys. Rev. D 88 (2013) 085018 [arXiv:1305.0785] [INSPIRE].ADSGoogle Scholar
  61. [61]
    R. Benedetti and C. Petronio, Lectures on Hyperbolic Geometry, Springer-Verlag, (1992).Google Scholar
  62. [62]
    O. DeWolfe, T. Hauer, A. Iqbal and B. Zwiebach, Uncovering infinite symmetries on [p, q] 7-branes: Kac-Moody algebras and beyond, Adv. Theor. Math. Phys. 3 (1999) 1835 [hep-th/9812209] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  63. [63]
    P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983) 401.MathSciNetMATHCrossRefGoogle Scholar
  64. [64]
    C.M. Hull, Global aspects of T-duality, gauged σ-models and T-folds, JHEP 10 (2007) 057 [hep-th/0604178] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  65. [65]
    C.M. Hull and R.A. Reid-Edwards, Flux compactifications of M-theory on twisted Tori, JHEP 10 (2006) 086 [hep-th/0603094] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    C.M. Hull and R.A. Reid-Edwards, Gauge symmetry, T-duality and doubled geometry, JHEP 08 (2008) 043 [arXiv:0711.4818] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    C.M. Hull and R.A. Reid-Edwards, Non-geometric backgrounds, doubled geometry and generalised T-duality, JHEP 09 (2009) 014 [arXiv:0902.4032] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    S. Kachru, M.B. Schulz, P.K. Tripathy and S.P. Trivedi, New supersymmetric string compactifications, JHEP 03 (2003) 061 [hep-th/0211182] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  69. [69]
    J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications, JHEP 10 (2005) 085 [hep-th/0508133] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  70. [70]
    D.M. Belov, C.M. Hull and R. Minasian, T-duality, gerbes and loop spaces, arXiv:0710.5151 [INSPIRE].
  71. [71]
    E. Plauschinn, On T-duality transformations for the three-sphere, Nucl. Phys. B 893 (2015) 257 [arXiv:1408.1715] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  72. [72]
    M. Graña, R. Minasian, M. Petrini and A. Tomasiello, A scan for new N = 1 vacua on twisted tori, JHEP 05 (2007) 031 [hep-th/0609124] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  73. [73]
    E. Silverstein, Simple de Sitter Solutions, Phys. Rev. D 77 (2008) 106006 [arXiv:0712.1196] [INSPIRE].ADSMathSciNetGoogle Scholar
  74. [74]
    F. Hassler, D. Lüst and S. Massai, On Inflation and de Sitter in Non-Geometric String Backgrounds, arXiv:1405.2325 [INSPIRE].
  75. [75]
    C. Condeescu, I. Florakis and D. Lüst, Asymmetric Orbifolds, Non-Geometric Fluxes and Non-Commutativity in Closed String Theory, JHEP 04 (2012) 121 [arXiv:1202.6366] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  76. [76]
    C.M. Hull, Massive string theories from M-theory and F-theory, JHEP 11 (1998) 027 [hep-th/9811021] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  77. [77]
    I. Ellwood and A. Hashimoto, Effective descriptions of branes on non-geometric tori, JHEP 12 (2006) 025 [hep-th/0607135] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  78. [78]
    W. Schulgin and J. Troost, Backreacted T-folds and non-geometric regions in configuration space, JHEP 12 (2008) 098 [arXiv:0808.1345] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  79. [79]
    O. DeWolfe, T. Hauer, A. Iqbal and B. Zwiebach, Uncovering the symmetries on [p, q] seven-branes: Beyond the Kodaira classification, Adv. Theor. Math. Phys. 3 (1999) 1785 [hep-th/9812028] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  80. [80]
    Y. Namikawa and K. Ueno, The complete classification of fibres in pencils of curves of genus two, Manuscripta Math. 9 (1973) 143.MathSciNetMATHCrossRefGoogle Scholar
  81. [81]
    J. de Boer and M. Shigemori, Exotic branes and non-geometric backgrounds, Phys. Rev. Lett. 104 (2010) 251603 [arXiv:1004.2521] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  82. [82]
    T. Kimura, Defect (p, q) Five-branes, Nucl. Phys. B 893 (2015) 1 [arXiv:1410.8403] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  83. [83]
    T. Kimura, S. Sasaki and M. Yata, Hyper-Kähler with torsion, T-duality and defect (p, q) five-branes, JHEP 03 (2015) 076 [arXiv:1411.3457] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  84. [84]
    N.A. Obers and B. Pioline, U duality and M-theory, Phys. Rept. 318 (1999) 113 [hep-th/9809039] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  85. [85]
    M. Blau and M. O’Loughlin, Aspects of U duality in matrix theory, Nucl. Phys. B 525 (1998) 182 [hep-th/9712047] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  86. [86]
    E. Lozano-Tellechea and T. Ortín, 7-branes and higher Kaluza-Klein branes, Nucl. Phys. B 607 (2001) 213 [hep-th/0012051] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  87. [87]
    J. de Boer, D.R. Mayerson and M. Shigemori, Classifying Supersymmetric Solutions in 3D Maximal Supergravity, Class. Quant. Grav. 31 (2014) 235004 [arXiv:1403.4600] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  88. [88]
    J. Raeymaekers and D. Van den Bleeken, Unlocking the Axion-Dilaton in 5D Supergravity, JHEP 11 (2014) 029 [arXiv:1407.5330] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  89. [89]
    T. Kikuchi, T. Okada and Y. Sakatani, Rotating string in doubled geometry with generalized isometries, Phys. Rev. D 86 (2012) 046001 [arXiv:1205.5549] [INSPIRE].ADSGoogle Scholar
  90. [90]
    E.A. Bergshoeff and F. Riccioni, D-Brane Wess-Zumino Terms and U-duality, JHEP 11 (2010) 139 [arXiv:1009.4657] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  91. [91]
    E.A. Bergshoeff and F. Riccioni, String Solitons and T-duality, JHEP 05 (2011) 131 [arXiv:1102.0934] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  92. [92]
    E.A. Bergshoeff, T. Ortín and F. Riccioni, Defect Branes, Nucl. Phys. B 856 (2012) 210 [arXiv:1109.4484] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  93. [93]
    D. Auroux, Mapping class group factorizations and symplectic 4-manifolds: some open problems, Proc. Symp. Pure Math. 74 (2006) 123.MathSciNetMATHCrossRefGoogle Scholar
  94. [94]
    F. Catanese, Trecce, Mapping class group, fibrazioni di Lefschetz ed applicazioni al diffeomorfismo di superficie algebriche, math/0405300.
  95. [95]
    M.R. Gaberdiel, T. Hauer and B. Zwiebach, Open string-string junction transitions, Nucl. Phys. B 525 (1998) 117 [hep-th/9801205] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  96. [96]
    H. Ooguri and C. Vafa, Summing up D instantons, Phys. Rev. Lett. 77 (1996) 3296 [hep-th/9608079] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  97. [97]
    T.W. Grimm, D. Klevers and M. Poretschkin, Fluxes and Warping for Gauge Couplings in F-theory, JHEP 01 (2013) 023 [arXiv:1202.0285] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  98. [98]
    C.V. Johnson, A.W. Peet and J. Polchinski, Gauge theory and the excision of repulson singularities, Phys. Rev. D 61 (2000) 086001 [hep-th/9911161] [INSPIRE].ADSMathSciNetGoogle Scholar
  99. [99]
    R. Gregory, J.A. Harvey and G.W. Moore, Unwinding strings and t duality of Kaluza-Klein and h monopoles, Adv. Theor. Math. Phys. 1 (1997) 283 [hep-th/9708086] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  100. [100]
    D. Tong, NS5-branes, T duality and world sheet instantons, JHEP 07 (2002) 013 [hep-th/0204186] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    J. McOrist and S. Sethi, M-theory and Type IIA Flux Compactifications, JHEP 12 (2012) 122 [arXiv:1208.0261] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  102. [102]
    T. Ashikaga and K. Konno, Global and local properties of pencils of algebraic curves, in Algebraic Geometry 2000, Azumino, Adv. Stud. in Pure Math, pp. 1-49.Google Scholar
  103. [103]
    L. Martucci, J.F. Morales and D. Ricci Pacifici, Branes, U-folds and hyperelliptic fibrations, JHEP 01 (2013) 145 [arXiv:1207.6120] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  104. [104]
    A.P. Braun, F. Fucito and J.F. Morales, U-folds as K3 fibrations, JHEP 10 (2013) 154 [arXiv:1308.0553] [INSPIRE].ADSGoogle Scholar
  105. [105]
    P. Candelas, A. Constantin, C. Damian, M. Larfors and J.F. Morales, Type IIB flux vacua from G-theory I, JHEP 02 (2015) 187 [arXiv:1411.4785] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  106. [106]
    P. Candelas, A. Constantin, C. Damian, M. Larfors and J.F. Morales, Type IIB flux vacua from G-theory II, JHEP 02 (2015) 188 [arXiv:1411.4786] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  107. [107]
    R. Blumenhagen, D. Lüst and S. Theisen, Basic Concepts of String Theory, Springer-Verlag, Berlin Heidelberg, Germany (2013).MATHCrossRefGoogle Scholar
  108. [108]
    S. Hirose, Presentations of periodic maps on oriented closed surfaces of genera up to 4, Osaka J. Math. 47 (2010) 385.MathSciNetMATHGoogle Scholar
  109. [109]
    B. Farb and D. Margalit, A Primer on Mapping Class Groups, Princeton University Press, (2011).Google Scholar
  110. [110]
    R. Blumenhagen and R. Sun, T-duality, Non-geometry and Lie Algebroids in Heterotic Double Field Theory, JHEP 02 (2015) 097 [arXiv:1411.3167] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  111. [111]
    M. Bianchi, G. Pradisi, C. Timirgaziu and L. Tripodi, Heterotic T-folds with a small number of neutral moduli, JHEP 10 (2012) 089 [arXiv:1207.2665] [INSPIRE].ADSCrossRefGoogle Scholar
  112. [112]
    A. Font, I. Garc´ıa-Etxebarria, D. Lüst, S. Massai and C. Mayrhofer, to appear.Google Scholar
  113. [113]
    A. Johansen, A comment on BPS states in F-theory in eight-dimensions, Phys. Lett. B 395 (1997) 36 [hep-th/9608186] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  114. [114]
    R. Blumenhagen, Basics of F-theory from the Type IIB Perspective, Fortsch. Phys. 58 (2010) 820 [arXiv:1002.2836] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  115. [115]
    A. Giveon, M. Porrati and E. Rabinovici, Target space duality in string theory, Phys. Rept. 244 (1994) 77 [hep-th/9401139] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  116. [116]
    O. Lunin and J.M. Maldacena, Deforming field theories with U(1) × U(1) global symmetry and their gravity duals, JHEP 05 (2005) 033 [hep-th/0502086] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  117. [117]
    R. Minasian, M. Petrini and A. Zaffaroni, Gravity duals to deformed SYM theories and Generalized Complex Geometry, JHEP 12 (2006) 055 [hep-th/0606257] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Dieter Lüst
    • 1
    • 2
  • Stefano Massai
    • 1
  • Valentí Vall Camell
    • 1
  1. 1.Arnold Sommerfeld Center for Theoretical PhysicsMünchenGermany
  2. 2.Max-Planck-Institut für PhysikMünchenGermany

Personalised recommendations