Journal of High Energy Physics

, 2016:119 | Cite as

Challenges for D-brane large-field inflation with stabilizer fields

  • Aitor Landete
  • Fernando Marchesano
  • Clemens Wieck
Open Access
Regular Article - Theoretical Physics


We study possible string theory compactifications which, in the low-energy limit, describe chaotic inflation with a stabilizer field. We first analyze type IIA setups where the inflationary potential arises from a D6-brane wrapping an internal three-cycle, and where the stabilizer field is either an open-string or bulk Kähler modulus. We find that after integrating out the relevant closed-string moduli consistently, tachyonic directions arise during inflation which cannot be lifted. This is ultimately due to the shift symmetries of the type IIA Kähler potential at large compactification volume. This motivates us to search for stabilizer candidates in the complex structure sector of type IIB orientifolds, since these fields couple to D7-brane Wilson lines and their shift symmetries are generically broken away from the large complex structure limit. However, we find that in these setups the challenge is to obtain the necessary hierarchy between the inflationary and Kaluza-Klein scales.


Cosmology of Theories beyond the SM D-branes Supergravity Models 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    D. Baumann and L. McAllister, Inflation and String Theory, arXiv:1404.2601 [INSPIRE].
  2. [2]
    A. Westphal, String cosmology — Large-field inflation in string theory, Int. J. Mod. Phys. A 30 (2015) 1530024 [arXiv:1409.5350] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    E. Silverstein, TASI lectures on cosmological observables and string theory, arXiv:1606.03640 [INSPIRE].
  4. [4]
    E. Silverstein and A. Westphal, Monodromy in the CMB: Gravity Waves and String Inflation, Phys. Rev. D 78 (2008) 106003 [arXiv:0803.3085] [INSPIRE].ADSGoogle Scholar
  5. [5]
    L. McAllister, E. Silverstein and A. Westphal, Gravity Waves and Linear Inflation from Axion Monodromy, Phys. Rev. D 82 (2010) 046003 [arXiv:0808.0706] [INSPIRE].ADSGoogle Scholar
  6. [6]
    M. Berg, E. Pajer and S. Sjors, Dante’s Inferno, Phys. Rev. D 81 (2010) 103535 [arXiv:0912.1341] [INSPIRE].ADSGoogle Scholar
  7. [7]
    E. Palti and T. Weigand, Towards large r from [p, q]-inflation, JHEP 04 (2014) 155 [arXiv:1403.7507] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Retolaza, A.M. Uranga and A. Westphal, Bifid Throats for Axion Monodromy Inflation, JHEP 07 (2015) 099 [arXiv:1504.02103] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    F. Marchesano, G. Shiu and A.M. Uranga, F-term Axion Monodromy Inflation, JHEP 09 (2014) 184 [arXiv:1404.3040] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    R. Blumenhagen and E. Plauschinn, Towards Universal Axion Inflation and Reheating in String Theory, Phys. Lett. B 736 (2014) 482 [arXiv:1404.3542] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    A. Hebecker, S.C. Kraus and L.T. Witkowski, D7-Brane Chaotic Inflation, Phys. Lett. B 737 (2014) 16 [arXiv:1404.3711] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    L.E. Ibáñez and I. Valenzuela, The inflaton as an MSSM Higgs and open string modulus monodromy inflation, Phys. Lett. B 736 (2014) 226 [arXiv:1404.5235] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    F. Hassler, D. Lüst and S. Massai, On Inflation and de Sitter in Non-Geometric String Backgrounds, arXiv:1405.2325 [INSPIRE].
  14. [14]
    L. McAllister, E. Silverstein, A. Westphal and T. Wrase, The Powers of Monodromy, JHEP 09 (2014) 123 [arXiv:1405.3652] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Franco, D. Galloni, A. Retolaza and A. Uranga, On axion monodromy inflation in warped throats, JHEP 02 (2015) 086 [arXiv:1405.7044] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    E. Dudas, Three-form multiplet and inflation, JHEP 12 (2014) 014 [arXiv:1407.5688] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    R. Blumenhagen, D. Herschmann and E. Plauschinn, The Challenge of Realizing F-term Axion Monodromy Inflation in String Theory, JHEP 01 (2015) 007 [arXiv:1409.7075] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    H. Hayashi, R. Matsuda and T. Watari, Issues in Complex Structure Moduli Inflation, arXiv:1410.7522 [INSPIRE].
  19. [19]
    A. Hebecker, P. Mangat, F. Rompineve and L.T. Witkowski, Tuning and Backreaction in F-term Axion Monodromy Inflation, Nucl. Phys. B 894 (2015) 456 [arXiv:1411.2032] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  20. [20]
    L.E. Ibáñez, F. Marchesano and I. Valenzuela, Higgs-otic Inflation and String Theory, JHEP 01 (2015) 128 [arXiv:1411.5380] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    I. García-Etxebarria, T.W. Grimm and I. Valenzuela, Special Points of Inflation in Flux Compactifications, Nucl. Phys. B 899 (2015) 414 [arXiv:1412.5537] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    A. Hebecker, P. Mangat, F. Rompineve and L.T. Witkowski, Winding out of the Swamp: Evading the Weak Gravity Conjecture with F-term Winding Inflation?, Phys. Lett. B 748 (2015) 455 [arXiv:1503.07912] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    D. Escobar, A. Landete, F. Marchesano and D. Regalado, Large field inflation from D-branes, Phys. Rev. D 93 (2016) 081301 [arXiv:1505.07871] [INSPIRE].ADSGoogle Scholar
  24. [24]
    R. Blumenhagen, C. Damian, A. Font, D. Herschmann and R. Sun, The Flux-Scaling Scenario: de Sitter Uplift and Axion Inflation, Fortsch. Phys. 64 (2016) 536 [arXiv:1510.01522] [INSPIRE].CrossRefMATHGoogle Scholar
  25. [25]
    D. Escobar, A. Landete, F. Marchesano and D. Regalado, D6-branes and axion monodromy inflation, JHEP 03 (2016) 113 [arXiv:1511.08820] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    F. Baume and E. Palti, Backreacted Axion Field Ranges in String Theory, JHEP 08 (2016) 043 [arXiv:1602.06517] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Kawasaki, M. Yamaguchi and T. Yanagida, Natural chaotic inflation in supergravity, Phys. Rev. Lett. 85 (2000) 3572 [hep-ph/0004243] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    F. Marchesano, D. Regalado and G. Zoccarato, On D-brane moduli stabilisation, JHEP 11 (2014) 097 [arXiv:1410.0209] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    W. Buchmüller, C. Wieck and M.W. Winkler, Supersymmetric Moduli Stabilization and High-Scale Inflation, Phys. Lett. B 736 (2014) 237 [arXiv:1404.2275] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    R. Kallosh, A. Linde and T. Rube, General inflaton potentials in supergravity, Phys. Rev. D 83 (2011) 043507 [arXiv:1011.5945] [INSPIRE].ADSGoogle Scholar
  31. [31]
    O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, Type IIA moduli stabilization, JHEP 07 (2005) 066 [hep-th/0505160] [INSPIRE].ADSMathSciNetGoogle Scholar
  32. [32]
    P.G. Camara, A. Font and L.E. Ibáñez, Fluxes, moduli fixing and MSSM-like vacua in a simple IIA orientifold, JHEP 09 (2005) 013 [hep-th/0506066] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    E. Palti, G. Tasinato and J. Ward, WEAKLY-coupled IIA Flux Compactifications, JHEP 06 (2008) 084 [arXiv:0804.1248] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    F. Carta, F. Marchesano, W. Staessens and G. Zoccarato, Open string multi-branched and Kähler potentials, arXiv:1606.00508 [INSPIRE].
  35. [35]
    T.W. Grimm and D. Vieira Lopes, The N = 1 effective actions of D-branes in Type IIA and IIB orientifolds, Nucl. Phys. B 855 (2012) 639 [arXiv:1104.2328] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    M. Kerstan and T. Weigand, The Effective action of D6-branes in N = 1 type IIA orientifolds, JHEP 06 (2011) 105 [arXiv:1104.2329] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    F. Marchesano, P. McGuirk and G. Shiu, Open String Wavefunctions in Warped Compactifications, JHEP 04 (2009) 095 [arXiv:0812.2247] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  38. [38]
    W. Buchmüller, E. Dudas, L. Heurtier and C. Wieck, Large-Field Inflation and Supersymmetry Breaking, JHEP 09 (2014) 053 [arXiv:1407.0253] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    R. Kallosh and A.D. Linde, Landscape, the scale of SUSY breaking and inflation, JHEP 12 (2004) 004 [hep-th/0411011] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    C. Wieck and M.W. Winkler, Inflation with Fayet-Iliopoulos Terms, Phys. Rev. D 90 (2014) 103507 [arXiv:1408.2826] [INSPIRE].ADSGoogle Scholar
  41. [41]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  42. [42]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    V. Balasubramanian and P. Berglund, Stringy corrections to Kähler potentials, SUSY breaking and the cosmological constant problem, JHEP 11 (2004) 085 [hep-th/0408054] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    A. Westphal, de Sitter string vacua from Kähler uplifting, JHEP 03 (2007) 102 [hep-th/0611332] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    X. Dong, B. Horn, E. Silverstein and A. Westphal, Simple exercises to flatten your potential, Phys. Rev. D 84 (2011) 026011 [arXiv:1011.4521] [INSPIRE].ADSGoogle Scholar
  46. [46]
    W. Buchmüller, E. Dudas, L. Heurtier, A. Westphal, C. Wieck and M.W. Winkler, Challenges for Large-Field Inflation and Moduli Stabilization, JHEP 04 (2015) 058 [arXiv:1501.05812] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    E. Dudas and C. Wieck, Moduli backreaction and supersymmetry breaking in string-inspired inflation models, JHEP 10 (2015) 062 [arXiv:1506.01253] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    P. Candelas, X.C. De La Ossa, P.S. Green and L. Parkes, A Pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B 359 (1991) 21 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    P. Berglund et al., Periods for Calabi-Yau and Landau-Ginzburg vacua, Nucl. Phys. B 419 (1994) 352 [hep-th/9308005] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    P. Candelas, X. De La Ossa, A. Font, S.H. Katz and D.R. Morrison, Mirror symmetry for two parameter models. 1., Nucl. Phys. B 416 (1994) 481 [hep-th/9308083] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    M.-x. Huang, A. Klemm and S. Quackenbush, Topological string theory on compact Calabi-Yau: Modularity and boundary conditions, Lect. Notes Phys. 757 (2009) 45 [hep-th/0612125] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  52. [52]
    N. Cabo Bizet, O. Loaiza-Brito and I. Zavala, Mirror quintic vacua: hierarchies and inflation, arXiv:1605.03974 [INSPIRE].
  53. [53]
    R. Blumenhagen, D. Herschmann and F. Wolf, String Moduli Stabilization at the Conifold, JHEP 08 (2016) 110 [arXiv:1605.06299] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    T.W. Grimm and J. Louis, The Effective action of N = 1 Calabi-Yau orientifolds, Nucl. Phys. B 699 (2004) 387 [hep-th/0403067] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  55. [55]
    H. Jockers and J. Louis, The effective action of D7-branes in N = 1 Calabi-Yau orientifolds, Nucl. Phys. B 705 (2005) 167 [hep-th/0409098] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  56. [56]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].ADSMathSciNetGoogle Scholar
  57. [57]
    R. Blumenhagen, A. Font, M. Fuchs, D. Herschmann and E. Plauschinn, Towards Axionic Starobinsky-like Inflation in String Theory, Phys. Lett. B 746 (2015) 217 [arXiv:1503.01607] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  58. [58]
    R. Blumenhagen, A. Font, M. Fuchs, D. Herschmann, E. Plauschinn, Y. Sekiguchi et al., A Flux-Scaling Scenario for High-Scale Moduli Stabilization in String Theory, Nucl. Phys. B 897 (2015) 500 [arXiv:1503.07634] [INSPIRE].ADSCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Aitor Landete
    • 1
  • Fernando Marchesano
    • 1
  • Clemens Wieck
    • 1
    • 2
  1. 1.Instituto de Física Teórica UAM-CSICMadridSpain
  2. 2.Departamento de Física TeóricaUniversidad Autónoma de MadridMadridSpain

Personalised recommendations