Advertisement

Journal of High Energy Physics

, 2016:107 | Cite as

M2-branes and the (2, 0) superalgebra

  • N. Lambert
  • D. Sacco
Open Access
Regular Article - Theoretical Physics

Abstract

We present a generalization of the six-dimensional (2, 0) system of arXiv:1007.2982 to include a constant abelian 3-form. For vanishing 3-form this system is known to provide a variety descriptions of parallel M5-branes. For a particular choice of 3-form the system is shown to reduce to that of two M2-branes. Thus this generalised (2, 0) system provides a unified description of two parallel M2-branes or M5-branes.

Keywords

Extended Supersymmetry M-Theory p-branes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    W. Taylor, D-brane field theory on compact spaces, Phys. Lett. B 394 (1997) 283 [hep-th/9611042] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    A. Gustavsson, Algebraic structures on parallel M 2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M 2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M 2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    J. Bagger, N. Lambert, S. Mukhi and C. Papageorgakis, Multiple membranes in M-theory, Phys. Rept. 527 (2013) 1 [arXiv:1203.3546] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    O. Aharony, M. Berkooz, S. Kachru, N. Seiberg and E. Silverstein, Matrix description of interacting theories in six-dimensions, Adv. Theor. Math. Phys. 1 (1998) 148 [hep-th/9707079] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    M.R. Douglas, On D = 5 super Yang-Mills theory and (2, 0) theory, JHEP 02 (2011) 011 [arXiv:1012.2880] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  8. [8]
    N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, M 5-branes, D4-branes and quantum 5D super-Yang-Mills, JHEP 01 (2011) 083 [arXiv:1012.2882] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    C.M. Hull and N. Lambert, Emergent time and the M 5-brane, JHEP 06 (2014) 016 [arXiv:1403.4532] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    I. Jeon, N. Lambert and P. Richmond, Periodic arrays of M 2-branes, JHEP 11 (2012) 100 [arXiv:1206.6699] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    N. Lambert and C. Papageorgakis, Non-Abelian (2, 0) tensor multiplets and 3-algebras, JHEP 08 (2010) 083 [arXiv:1007.2982] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    A. Gustavsson, private communication.Google Scholar
  13. [13]
    N. Lambert and P. Richmond, (2, 0) supersymmetry and the light-cone description of M 5-branes, JHEP 02 (2012) 013 [arXiv:1109.6454] [INSPIRE].
  14. [14]
    P.-M. Ho and Y. Matsuo, M 5 from M 2, JHEP 06 (2008) 105 [arXiv:0804.3629] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    P.-M. Ho, Y. Imamura, Y. Matsuo and S. Shiba, M 5-brane in three-form flux and multiple M 2-branes, JHEP 08 (2008) 014 [arXiv:0805.2898] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    I.A. Bandos and P.K. Townsend, Light-cone M 5 and multiple M 2-branes, Class. Quant. Grav. 25 (2008) 245003 [arXiv:0806.4777] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    P. Pasti, I. Samsonov, D. Sorokin and M. Tonin, BLG-motivated Lagrangian formulation for the chiral two-form gauge field in D = 6 and M 5-branes, Phys. Rev. D 80 (2009) 086008 [arXiv:0907.4596] [INSPIRE].ADSMathSciNetGoogle Scholar
  18. [18]
    U. Gran, GAMMA: a Mathematica package for performing gamma matrix algebra and Fierz transformations in arbitrary dimensions, hep-th/0105086 [INSPIRE].
  19. [19]
    J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP 12 (1997) 002 [hep-th/9711053] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    C.M. Hull and R.R. Khuri, Branes, times and dualities, Nucl. Phys. B 536 (1998) 219 [hep-th/9808069] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    G. Papadopoulos, M2-branes, 3-Lie algebras and Plücker relations, JHEP 05 (2008) 054 [arXiv:0804.2662] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J.P. Gauntlett and J.B. Gutowski, Constraining maximally supersymmetric membrane actions, JHEP 06 (2008) 053 [arXiv:0804.3078] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    N. Lambert and D. Tong, Membranes on an orbifold, Phys. Rev. Lett. 101 (2008) 041602 [arXiv:0804.1114] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    J. Distler, S. Mukhi, C. Papageorgakis and M. Van Raamsdonk, M 2-branes on M-folds, JHEP 05 (2008) 038 [arXiv:0804.1256] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    N. Lambert and C. Papageorgakis, Relating U(N) × U(N) to SU(N) × SU(N) Chern-Simons membrane theories, JHEP 04 (2010) 104 [arXiv:1001.4779] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    D. Bashkirov and A. Kapustin, Dualities between N = 8 superconformal field theories in three dimensions, JHEP 05 (2011) 074 [arXiv:1103.3548] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    S. Palmer and C. Sämann, M-brane models from non-Abelian gerbes, JHEP 07 (2012) 010 [arXiv:1203.5757] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    S. Kawamoto, T. Takimi and D. Tomino, Branes from a non-Abelian (2, 0) tensor multiplet with 3-algebra, J. Phys. A 44 (2011) 325402 [arXiv:1103.1223] [INSPIRE].MathSciNetMATHGoogle Scholar
  29. [29]
    Y. Honma, M. Ogawa and S. Shiba, Dp-branes, NS5-branes and U-duality from non-Abelian (2, 0) theory with Lie 3-algebra, JHEP 04 (2011) 117 [arXiv:1103.1327] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of MathematicsKing’s College LondonLondonU.K.

Personalised recommendations