Advertisement

Journal of High Energy Physics

, 2016:101 | Cite as

Factorization of chiral string amplitudes

  • Yu-tin Huang
  • Warren Siegel
  • Ellis Ye Yuan
Open Access
Regular Article - Theoretical Physics

Abstract

We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to be auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.

Keywords

Bosonic Strings Scattering Amplitudes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles in Arbitrary Dimensions, Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles: Scalars, Gluons and Gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    F. Cachazo, S. He and E.Y. Yuan, Einstein-Yang-Mills Scattering Amplitudes From Scattering Equations, JHEP 01 (2015) 121 [arXiv:1409.8256] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    F. Cachazo, S. He and E.Y. Yuan, Scattering Equations and Matrices: From Einstein To Yang-Mills, DBI and NLSM, JHEP 07 (2015) 149 [arXiv:1412.3479] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    D.J. Gross and P.F. Mende, The High-Energy Behavior of String Scattering Amplitudes, Phys. Lett. B 197 (1987) 129 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    L. Mason and D. Skinner, Ambitwistor strings and the scattering equations, JHEP 07 (2014) 048 [arXiv:1311.2564] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    N. Berkovits, Infinite Tension Limit of the Pure Spinor Superstring, JHEP 03 (2014) 017 [arXiv:1311.4156] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    K. Ohmori, Worldsheet Geometries of Ambitwistor String, JHEP 06 (2015) 075 [arXiv:1504.02675] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    E. Casali, Y. Geyer, L. Mason, R. Monteiro and K.A. Roehrig, New Ambitwistor String Theories, JHEP 11 (2015) 038 [arXiv:1506.08771] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, P. Tourkine and P. Vanhove, Scattering Equations and String Theory Amplitudes, Phys. Rev. D 90 (2014) 106002 [arXiv:1403.4553] [INSPIRE].ADSGoogle Scholar
  11. [11]
    W. Siegel, Amplitudes for left-handed strings, arXiv:1512.02569 [INSPIRE].
  12. [12]
    O. Hohm, W. Siegel and B. Zwiebach, Doubled α -geometry, JHEP 02 (2014) 065 [arXiv:1306.2970] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    H. Kawai, D.C. Lewellen and S.H.H. Tye, A Relation Between Tree Amplitudes of Closed and Open Strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    S. Stieberger, Open & Closed vs. Pure Open String Disk Amplitudes, arXiv:0907.2211 [INSPIRE].
  15. [15]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, T. Sondergaard and P. Vanhove, The Momentum Kernel of Gauge and Gravity Theories, JHEP 01 (2011) 001 [arXiv:1010.3933] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N-Point Superstring Disk Amplitude I. Pure Spinor Computation, Nucl. Phys. B 873 (2013) 419 [arXiv:1106.2645] [INSPIRE].
  17. [17]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N-Point Superstring Disk Amplitude II. Amplitude and Hypergeometric Function Structure, Nucl. Phys. B 873 (2013) 461 [arXiv:1106.2646] [INSPIRE].
  18. [18]
    O. Schlotterer and S. Stieberger, Motivic Multiple Zeta Values and Superstring Amplitudes, J. Phys. A 46 (2013) 475401 [arXiv:1205.1516] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  19. [19]
    F. Brown, On the decomposition of motivic multiple zeta values, arXiv:1102.1310 [INSPIRE].
  20. [20]
    J. Broedel, O. Schlotterer and S. Stieberger, α -expansion of open superstring amplitudes, http://wwwth.mpp.mpg.de/members/stieberg/mzv/index.html.
  21. [21]
    J. Broedel, O. Schlotterer and S. Stieberger, Polylogarithms, Multiple Zeta Values and Superstring Amplitudes, Fortsch. Phys. 61 (2013) 812 [arXiv:1304.7267] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    J. Broedel, O. Schlotterer, S. Stieberger and T. Terasoma, All order α -expansion of superstring trees from the Drinfeld associator, Phys. Rev. D 89 (2014) 066014 [arXiv:1304.7304] [INSPIRE].ADSGoogle Scholar
  23. [23]
    C. Reutenauer, Free Lie Algebras, LMS monographs, Clarendon Press (1993).Google Scholar
  24. [24]
    Y.-t. Huang, O. Schlotterer and C. Wen, Universality in string interactions, arXiv:1602.01674 [INSPIRE].
  25. [25]
    U. Naseer and B. Zwiebach, Three-point Functions in Duality-Invariant Higher-Derivative Gravity, JHEP 03 (2016) 147 [arXiv:1602.01101] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    O. Hohm and B. Zwiebach, Green-Schwarz mechanism and α -deformed Courant brackets, JHEP 01 (2015) 012 [arXiv:1407.0708] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    O. Hohm and B. Zwiebach, Double metric, generalized metric and α -deformed double field theory, Phys. Rev. D 93 (2016) 064035 [arXiv:1509.02930] [INSPIRE].ADSGoogle Scholar
  28. [28]
    S.F. Hassan and R.A. Rosen, Bimetric Gravity from Ghost-free Massive Gravity, JHEP 02 (2012) 126 [arXiv:1109.3515] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    F. Del Monte, D. Francia and P.A. Grassi, Multimetric Supergravities, arXiv:1605.06793 [INSPIRE].
  30. [30]
    D.G. Boulware and S. Deser, Can gravitation have a finite range?, Phys. Rev. D 6 (1972) 3368 [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of PhysicsNational Taiwan UniversityTaipeiTaiwan
  2. 2.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.
  3. 3.C.N. Yang Institute for Theoretical PhysicsState University of New YorkStony BrookU.S.A.

Personalised recommendations