Advertisement

Journal of High Energy Physics

, 2016:23 | Cite as

Littlest Seesaw model from S 4 × U(1)

  • Stephen F. King
  • Christoph Luhn
Open Access
Regular Article - Theoretical Physics

Abstract

We show how a minimal (littlest) seesaw model involving two right-handed neutrinos and a very constrained Dirac mass matrix, with one texture zero and two independent Dirac masses, may arise from S 4 ×U(1) symmetry in a semi-direct supersymmetric model. The resulting CSD3 form of neutrino mass matrix only depends on two real mass parameters plus one undetermined phase. We show how the phase may be fixed to be one of the cube roots of unity by extending the S 4 × U(1) symmetry to include a product of Z 3 factors together with a CP symmetry, which is spontaneously broken leaving a single residual Z 3 in the charged lepton sector and a residual Z 2 in the neutrino sector, with suppressed higher order corrections. With the phase chosen from the cube roots of unity to be −2π/3, the model predicts a normal neutrino mass hierarchy with m 1 = 0, reactor angle θ 13 = 8.7°, solar angle θ 12 = 34°, atmospheric angle θ 23 = 44°, and CP violating oscillation phase δ CP = −93°, depending on the fit of the model to the neutrino masses.

Keywords

Discrete Symmetries Neutrino Physics Solar and Atmospheric Neutrinos 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    T. Ohlsson ed., Special Issue on “Neutrino Oscillations: Celebrating the Nobel Prize in Physics 2015” in Nuclear Physics B, Nucl. Phys. B 908 (2016) 1.Google Scholar
  2. [2]
    S.F. King and C. Luhn, Neutrino Mass and Mixing with Discrete Symmetry, Rept. Prog. Phys. 76 (2013) 056201 [arXiv:1301.1340] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S.F. King, Neutrino mass models, Rept. Prog. Phys. 67 (2004) 107 [hep-ph/0310204] [INSPIRE].
  4. [4]
    H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada and M. Tanimoto, Non-Abelian Discrete Symmetries in Particle Physics, Prog. Theor. Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  5. [5]
    S.F. King, A. Merle, S. Morisi, Y. Shimizu and M. Tanimoto, Neutrino Mass and Mixing: from Theory to Experiment, New J. Phys. 16 (2014) 045018 [arXiv:1402.4271] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S.F. King, Models of Neutrino Mass, Mixing and CP-violation, J. Phys. G 42 (2015) 123001 [arXiv:1510.02091] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    P. Minkowski, μeγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
  8. [8]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, in Sanibel Talk, CALT-68-709, February 1979, and in Supergravity, North Holland, Amsterdam, The Netherlands (1979), Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].
  9. [9]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, in proceedings of the Workshop on Unified Theory and Baryon Number of the Universe, KEK, Japan (1979), Conf. Proc. C 7902131 (1979) 95 [INSPIRE].
  10. [10]
    S.L. Glashow, The future of elementary particle physics, in Cargese Lectures (1979), NATO Sci. Ser. B 61 (1980) 687 [INSPIRE].
  11. [11]
    R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  13. [13]
    S.F. King, Neutrino Mass and Mixing in the Seesaw Playground, Nucl. Phys. B 908 (2016) 456 [arXiv:1511.03831] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    S.F. King, Large mixing angle MSW and atmospheric neutrinos from single right-handed neutrino dominance and U(1) family symmetry, Nucl. Phys. B 576 (2000) 85 [hep-ph/9912492] [INSPIRE].
  15. [15]
    S.F. King, Constructing the large mixing angle MNS matrix in seesaw models with right-handed neutrino dominance, JHEP 09 (2002) 011 [hep-ph/0204360] [INSPIRE].
  16. [16]
    P.H. Frampton, S.L. Glashow and T. Yanagida, Cosmological sign of neutrino CP-violation, Phys. Lett. B 548 (2002) 119 [hep-ph/0208157] [INSPIRE].
  17. [17]
    K. Harigaya, M. Ibe and T.T. Yanagida, Seesaw Mechanism with Occam’s Razor, Phys. Rev. D 86 (2012) 013002 [arXiv:1205.2198] [INSPIRE].ADSGoogle Scholar
  18. [18]
    S.F. King, Minimal predictive see-saw model with normal neutrino mass hierarchy, JHEP 07 (2013) 137 [arXiv:1304.6264] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Towards a complete A 4× SU(5) SUSY GUT, JHEP 06 (2015) 141 [arXiv:1503.03306] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Towards a complete Δ(27) × SO(10) SUSY GUT, Phys. Rev. D 94 (2016) 016006 [arXiv:1512.00850] [INSPIRE].ADSGoogle Scholar
  21. [21]
    F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Leptogenesis in minimal predictive seesaw models, JHEP 10 (2015) 104 [arXiv:1505.05504] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S.F. King, Atmospheric and solar neutrinos with a heavy singlet, Phys. Lett. B 439 (1998) 350 [hep-ph/9806440] [INSPIRE].
  23. [23]
    S.F. King, Atmospheric and solar neutrinos from single right-handed neutrino dominance and U(1) family symmetry, Nucl. Phys. B 562 (1999) 57 [hep-ph/9904210] [INSPIRE].
  24. [24]
    S.F. King, Predicting neutrino parameters from SO(3) family symmetry and quark-lepton unification, JHEP 08 (2005) 105 [hep-ph/0506297] [INSPIRE].
  25. [25]
    S. Antusch, S.F. King, C. Luhn and M. Spinrath, Trimaximal mixing with predicted θ 13 from a new type of constrained sequential dominance, Nucl. Phys. B 856 (2012) 328 [arXiv:1108.4278] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  26. [26]
    S.F. King, Minimal see-saw model predicting best fit lepton mixing angles, Phys. Lett. B 724 (2013) 92 [arXiv:1305.4846] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S.F. King, A model of quark and lepton mixing, JHEP 01 (2014) 119 [arXiv:1311.3295] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S.F. King, A to Z of Flavour with Pati-Salam, JHEP 08 (2014) 130 [arXiv:1406.7005] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    F. Björkeroth and S.F. King, Testing constrained sequential dominance models of neutrinos, J. Phys. G 42 (2015) 125002 [arXiv:1412.6996] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S.F. King, Littlest Seesaw, JHEP 02 (2016) 085 [arXiv:1512.07531] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    S.F. King and C. Luhn, On the origin of neutrino flavour symmetry, JHEP 10 (2009) 093 [arXiv:0908.1897] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    Z.-z. Xing and S. Zhou, Tri-bimaximal Neutrino Mixing and Flavor-dependent Resonant Leptogenesis, Phys. Lett. B 653 (2007) 278 [hep-ph/0607302] [INSPIRE].
  33. [33]
    C.H. Albright, A. Dueck and W. Rodejohann, Possible Alternatives to Tri-bimaximal Mixing, Eur. Phys. J. C 70 (2010) 1099 [arXiv:1004.2798] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    X.-G. He and A. Zee, Minimal Modification to Tri-bimaximal Mixing, Phys. Rev. D 84 (2011) 053004 [arXiv:1106.4359] [INSPIRE].ADSGoogle Scholar
  35. [35]
    W. Rodejohann and H. Zhang, Simple two Parameter Description of Lepton Mixing, Phys. Rev. D 86 (2012) 093008 [arXiv:1207.1225] [INSPIRE].ADSGoogle Scholar
  36. [36]
    I. de Medeiros Varzielas and L. Lavoura, Flavour models for T M 1 lepton mixing, J. Phys. G 40 (2013) 085002 [arXiv:1212.3247] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    W. Grimus, Discrete symmetries, roots of unity and lepton mixing, J. Phys. G 40 (2013) 075008 [arXiv:1301.0495] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    C.H. Albright and W. Rodejohann, Comparing Trimaximal Mixing and Its Variants with Deviations from Tri-bimaximal Mixing, Eur. Phys. J. C 62 (2009) 599 [arXiv:0812.0436] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [INSPIRE].
  40. [40]
    C. Luhn, Trimaximal TM 1 neutrino mixing in S 4 with spontaneous CP-violation, Nucl. Phys. B 875 (2013) 80 [arXiv:1306.2358] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    G.-J. Ding, S.F. King, C. Luhn and A.J. Stuart, Spontaneous CP-violation from vacuum alignment in S 4 models of leptons, JHEP 05 (2013) 084 [arXiv:1303.6180] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    F. Feruglio, C. Hagedorn and R. Ziegler, A realistic pattern of lepton mixing and masses from S 4 and CP, Eur. Phys. J. C 74 (2014) 2753 [arXiv:1303.7178] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Antusch, S.F. King, C. Luhn and M. Spinrath, Right Unitarity Triangles and Tri-Bimaximal Mixing from Discrete Symmetries and Unification, Nucl. Phys. B 850 (2011) 477 [arXiv:1103.5930] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  44. [44]
    S. Boudjemaa and S.F. King, Deviations from Tri-bimaximal Mixing: Charged Lepton Corrections and Renormalization Group Running, Phys. Rev. D 79 (2009) 033001 [arXiv:0808.2782] [INSPIRE].ADSGoogle Scholar
  45. [45]
    M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    F. Capozzi, G.L. Fogli, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Status of three-neutrino oscillation parameters, circa 2013, Phys. Rev. D 89 (2014) 093018 [arXiv:1312.2878] [INSPIRE].ADSGoogle Scholar
  47. [47]
    D.V. Forero, M. Tortola and J.W.F. Valle, Neutrino oscillations refitted, Phys. Rev. D 90 (2014) 093006 [arXiv:1405.7540] [INSPIRE].ADSGoogle Scholar
  48. [48]
    F. Borzumati and A. Masiero, Large Muon and electron Number Violations in Supergravity Theories, Phys. Rev. Lett. 57 (1986) 961 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model, Phys. Rev. D 53 (1996) 2442 [hep-ph/9510309] [INSPIRE].
  50. [50]
    S.F. King and M. Oliveira, Lepton flavor violation in string inspired models, Phys. Rev. D 60 (1999) 035003 [hep-ph/9804283] [INSPIRE].
  51. [51]
    M. Dimou, S.F. King and C. Luhn, Approaching Minimal Flavour Violation from an SU(5) × S 4 × U(1) SUSY GUT, JHEP 02 (2016) 118 [arXiv:1511.07886] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Dimou, S.F. King and C. Luhn, Phenomenological implications of an SU(5) × S 4 × U(1) SUSY GUT of flavor, Phys. Rev. D 93 (2016) 075026 [arXiv:1512.09063] [INSPIRE].ADSGoogle Scholar
  53. [53]
    T. Blazek and S.F. King, Lepton flavor violation in the constrained MSSM with natural neutrino mass hierarchy, Nucl. Phys. B 662 (2003) 359 [hep-ph/0211368] [INSPIRE].
  54. [54]
    S.F. King and C. Luhn, Trimaximal neutrino mixing from vacuum alignment in A 4 and S 4 models, JHEP 09 (2011) 042 [arXiv:1107.5332] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  55. [55]
    P. Ballett, S.F. King, C. Luhn, S. Pascoli and M.A. Schmidt, Testing atmospheric mixing sum rules at precision neutrino facilities, Phys. Rev. D 89 (2014) 016016 [arXiv:1308.4314] [INSPIRE].ADSGoogle Scholar
  56. [56]
    P. Ballett, S.F. King, C. Luhn, S. Pascoli and M.A. Schmidt, Precision measurements of θ 12 for testing models of discrete leptonic flavour symmetries, J. Phys. Conf. Ser. 598 (2015) 012014 [arXiv:1406.0308] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    C. Jarlskog, Commutator of the Quark Mass Matrices in the Standard Electroweak Model and a Measure of Maximal CP-violation, Phys. Rev. Lett. 55 (1985) 1039 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of SouthamptonSouthamptonUnited Kingdom
  2. 2.Theoretische Physik 1, Naturwissenschaftlich-Technische FakultätUniversität SiegenSiegenGermany

Personalised recommendations