Journal of High Energy Physics

, 2016:3 | Cite as

Dyonic AdS 4 black hole entropy and attractors via entropy function

  • Prieslei Goulart
Open Access
Regular Article - Theoretical Physics


Using the Sen’s entropy function formalism, we compute the entropy for the extremal dyonic black hole solutions of theories in the presence of dilaton field coupled to the field strength and a dilaton potential. We solve the attractor equations analytically and determine the near horizon metric, the value of the scalar fields and the electric field on the horizon, and consequently the entropy of these black holes. The attractor mechanism plays a very important role for these systems, and after studying the simplest systems involving dilaton fields, we propose a general solution for the value of the scalar field on the horizon, which allows us to solve the attractor equations for gauged supergravity theories in AdS 4 spaces. In particular, we derive an expression for the dyonic black hole entropy for the \( \mathcal{N}=8 \) gauged supergravity in 4 dimensions which does not contain explicitly the gauge parameter of the potential.


Black Holes Black Holes in String Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    G.W. Gibbons and K.-i. Maeda, Black Holes and Membranes in Higher Dimensional Theories with Dilaton Fields, Nucl. Phys. B 298 (1988) 741 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    D. Garfinkle, G.T. Horowitz and A. Strominger, Charged black holes in string theory, Phys. Rev. D 43 (1991) 3140 [Erratum ibid. D 45 (1992) 3888] [INSPIRE].
  3. [3]
    A.D. Shapere, S. Trivedi and F. Wilczek, Dual dilaton dyons, Mod. Phys. Lett. A 6 (1991) 2677 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    R. Kallosh, A.D. Linde, T. Ortín, A.W. Peet and A. Van Proeyen, Supersymmetry as a cosmic censor, Phys. Rev. D 46 (1992) 5278 [hep-th/9205027] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    S. Ferrara, R. Kallosh and A. Strominger, N=2 extremal black holes, Phys. Rev. D 52 (1995) R5412 [hep-th/9508072] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    A. Strominger, Macroscopic entropy of N = 2 extremal black holes, Phys. Lett. B 383 (1996) 39 [hep-th/9602111] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    S. Ferrara and R. Kallosh, Supersymmetry and attractors, Phys. Rev. D 54 (1996) 1514 [hep-th/9602136] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  8. [8]
    A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity, JHEP 09 (2005) 038 [hep-th/0506177] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].ADSGoogle Scholar
  12. [12]
    G.T. Horowitz, Introduction to Holographic Superconductors, Lect. Notes Phys. 828 (2011) 313 [arXiv:1002.1722].ADSCrossRefMATHGoogle Scholar
  13. [13]
    F. Denef and S.A. Hartnoll, Landscape of superconducting membranes, Phys. Rev. D 79 (2009) 126008 [arXiv:0901.1160] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett. 103 (2009) 151601 [arXiv:0907.3796] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum Criticality and Holographic Superconductors in M-theory, JHEP 02 (2010) 060 [arXiv:0912.0512] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    S.S. Gubser, C.P. Herzog, S.S. Pufu and T. Tesileanu, Superconductors from Superstrings, Phys. Rev. Lett. 103 (2009) 141601 [arXiv:0907.3510] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    K. Goldstein, N. Iizuka, R.P. Jena and S.P. Trivedi, Non-supersymmetric attractors, Phys. Rev. D 72 (2005) 124021 [hep-th/0507096] [INSPIRE].ADSMathSciNetGoogle Scholar
  18. [18]
    D. Astefanesei, H. Nastase, H. Yavartanoo and S. Yun, Moduli flow and non-supersymmetric AdS attractors, JHEP 04 (2008) 074 [arXiv:0711.0036] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    S.L. Cacciatori and D. Klemm, Supersymmetric AdS 4 black holes and attractors, JHEP 01 (2010) 085 [arXiv:0911.4926] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    G. Dall’Agata and A. Gnecchi, Flow equations and attractors for black holes in N = 2 U(1) gauged supergravity, JHEP 03 (2011) 037 [arXiv:1012.3756] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    N. Halmagyi, BPS Black Hole Horizons in N = 2 Gauged Supergravity, JHEP 02 (2014) 051 [arXiv:1308.1439] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    N. Halmagyi, Static BPS black holes in AdS 4 with general dyonic charges, JHEP 03 (2015) 032 [arXiv:1408.2831] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    C. Toldo and S. Vandoren, Static nonextremal AdS 4 black hole solutions, JHEP 09 (2012) 048 [arXiv:1207.3014] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    A. Gnecchi and C. Toldo, On the non-BPS first order flow in N = 2 U(1)-gauged Supergravity, JHEP 03 (2013) 088 [arXiv:1211.1966] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    K. Hristov, C. Toldo and S. Vandoren, Phase transitions of magnetic AdS 4 black holes with scalar hair, Phys. Rev. D 88 (2013) 026019 [arXiv:1304.5187] [INSPIRE].ADSGoogle Scholar
  26. [26]
    A. Gnecchi and C. Toldo, First order flow for non-extremal AdS black holes and mass from holographic renormalization, JHEP 10 (2014) 075 [arXiv:1406.0666] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    H.K. Kunduri, J. Lucietti and H.S. Reall, Near-horizon symmetries of extremal black holes, Class. Quant. Grav. 24 (2007) 4169 [arXiv:0705.4214] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    A. Sen, Black Hole Entropy Function, Attractors and Precision Counting of Microstates, Gen. Rel. Grav. 40 (2008) 2249 [arXiv:0708.1270] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    J.F. Morales and H. Samtleben, Entropy function and attractors for AdS black holes, JHEP 10 (2006) 074 [hep-th/0608044] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    A. Anabalón and D. Astefanesei, On attractor mechanism of AdS 4 black holes, Phys. Lett. B 727 (2013) 568 [arXiv:1309.5863] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  31. [31]
    M.J. Duff and J.T. Liu, Anti-de Sitter black holes in gauged N = 8 supergravity, Nucl. Phys. B 554 (1999) 237 [hep-th/9901149] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Instituto de Física Teórica, UNESP-Universidade Estadual PaulistaSao PauloBrazil
  2. 2.Max-Planck-Institut für Physik (Werner Heisenberg Institut)MunichGermany

Personalised recommendations