Journal of High Energy Physics

, 2014:126 | Cite as

Electric field quench in AdS/CFT

  • Koji Hashimoto
  • Shunichiro Kinoshita
  • Keiju Murata
  • Takashi Oka
Open Access


An electric field quench, a suddenly applied electric field, can induce nontrivial dynamics in confining systems which may lead to thermalization as well as a deconfinement transition. In order to analyze this nonequilibrium transitions, we use the AdS/CFT correspondence for \( \mathcal{N}=2 \) supersymmetric QCD that has a confining meson sector. We find that the electric field quench causes the deconfinement transition even when the magnitude of the applied electric field is smaller than the critical value for the static case (which is the QCD Schwinger limit for quark-antiquark pair creation). The time dependence is crucial for this phenomenon, and the gravity dual explains it as an oscillation of a D-brane in the bulk AdS spacetime. Interestingly, the deconfinement time takes only discrete values as a function of the magnitude of the electric field. We advocate that the new deconfinement phenomenon is analogous to the exciton Mott transition.


AdS-CFT Correspondence Holography and quark-gluon plasmas Holography and condensed matter physics (AdS/CMT) 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    D.E. Kharzeev, L.D. McLerran and H.J. Warringa, The Effects of topological charge change in heavy ion collisions:Event by event P and CP-violation’, Nucl. Phys. A 803 (2008) 227 [arXiv:0711.0950] [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    V. Skokov, A.Y. Illarionov and V. Toneev, Estimate of the magnetic field strength in heavy-ion collisions, Int. J. Mod. Phys. A 24 (2009) 5925 [arXiv:0907.1396] [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    V. Voronyuk et al., (Electro-)Magnetic field evolution in relativistic heavy-ion collisions, Phys. Rev. C 83 (2011) 054911 [arXiv:1103.4239] [INSPIRE].ADSGoogle Scholar
  4. [4]
    A. Bzdak and V. Skokov, Event-by-event fluctuations of magnetic and electric fields in heavy ion collisions, Phys. Lett. B 710 (2012) 171 [arXiv:1111.1949] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    W.-T. Deng and X.-G. Huang, Event-by-event generation of electromagnetic fields in heavy-ion collisions, Phys. Rev. C 85 (2012) 044907 [arXiv:1201.5108] [INSPIRE].ADSGoogle Scholar
  6. [6]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  8. [8]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetMATHADSGoogle Scholar
  9. [9]
    S.R. Das, T. Nishioka and T. Takayanagi, Probe Branes, Time-dependent Couplings and Thermalization in AdS/CFT, JHEP 07 (2010) 071 [arXiv:1005.3348] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  10. [10]
    K. Hashimoto, N. Iizuka and T. Oka, Rapid Thermalization by Baryon Injection in Gauge/Gravity Duality, Phys. Rev. D 84 (2011) 066005 [arXiv:1012.4463] [INSPIRE].ADSGoogle Scholar
  11. [11]
    M. Ali-Akbari and H. Ebrahim, Meson Thermalization in Various Dimensions, JHEP 04 (2012) 145 [arXiv:1203.3425] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    M. Ali-Akbari and H. Ebrahim, Thermalization in External Magnetic Field, JHEP 03 (2013) 045 [arXiv:1211.1637] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    T. Ishii, S. Kinoshita, K. Murata and N. Tanahashi, Dynamical Meson Melting in Holography, JHEP 04 (2014) 099 [arXiv:1401.5106] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Black hole formation in AdS and thermalization on the boundary, JHEP 02 (2000) 039 [hep-th/9912209] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  15. [15]
    S. Bhattacharyya and S. Minwalla, Weak Field Black Hole Formation in Asymptotically AdS Spacetimes, JHEP 09 (2009) 034 [arXiv:0904.0464] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  16. [16]
    R.A. Janik and R.B. Peschanski, Gauge/gravity duality and thermalization of a boost-invariant perfect fluid, Phys. Rev. D 74 (2006) 046007 [hep-th/0606149] [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    H. Ebrahim and M. Headrick, Instantaneous Thermalization in Holographic Plasmas, arXiv:1010.5443 [INSPIRE].
  18. [18]
    J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic Evolution of Entanglement Entropy, JHEP 11 (2010) 149 [arXiv:1006.4090] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    V. Balasubramanian et al., Thermalization of Strongly Coupled Field Theories, Phys. Rev. Lett. 106 (2011) 191601 [arXiv:1012.4753] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    A. Buchel, L. Lehner and R.C. Myers, Thermal quenches in N = 2* plasmas, JHEP 08 (2012) 049 [arXiv:1206.6785] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    M.P. Heller, D. Mateos, W. van der Schee and D. Trancanelli, Strong Coupling Isotropization of Non-Abelian Plasmas Simplified, Phys. Rev. Lett. 108 (2012) 191601 [arXiv:1202.0981] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    V. Balasubramanian et al., Inhomogeneous Thermalization in Strongly Coupled Field Theories, Phys. Rev. Lett. 111 (2013) 231602 [arXiv:1307.1487] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    A. Buchel, L. Lehner, R.C. Myers and A. van Niekerk, Quantum quenches of holographic plasmas, JHEP 05 (2013) 067 [arXiv:1302.2924] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  25. [25]
    A. Karch and A. O’Bannon, Metallic AdS/CFT, JHEP 09 (2007) 024 [arXiv:0705.3870] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  26. [26]
    T. Albash, V.G. Filev, C.V. Johnson and A. Kundu, Quarks in an external electric field in finite temperature large-N gauge theory, JHEP 08 (2008) 092 [arXiv:0709.1554] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  27. [27]
    J. Erdmenger, R. Meyer and J.P. Shock, AdS/CFT with flavour in electric and magnetic Kalb-Ramond fields, JHEP 12 (2007) 091 [arXiv:0709.1551] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  28. [28]
    K. Hashimoto and T. Oka, Vacuum Instability in Electric Fields via AdS/CFT: Euler-Heisenberg Lagrangian and Planckian Thermalization, JHEP 10 (2013) 116 [arXiv:1307.7423] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    K. Hashimoto, T. Oka and A. Sonoda, Magnetic instability in AdS/CFT: Schwinger effect and Euler-Heisenberg Lagrangian of supersymmetric QCD, JHEP 06 (2014) 085 [arXiv:1403.6336] [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    G.W. Semenoff and K. Zarembo, Holographic Schwinger Effect, Phys. Rev. Lett. 107 (2011) 171601 [arXiv:1109.2920] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    J. Ambjørn and Y. Makeenko, Remarks on Holographic Wilson Loops and the Schwinger Effect, Phys. Rev. D 85 (2012) 061901 [arXiv:1112.5606] [INSPIRE].ADSGoogle Scholar
  32. [32]
    S. Bolognesi, F. Kiefer and E. Rabinovici, Comments on Critical Electric and Magnetic Fields from Holography, JHEP 01 (2013) 174 [arXiv:1210.4170] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    Y. Sato and K. Yoshida, Holographic description of the Schwinger effect in electric and magnetic fields, JHEP 04 (2013) 111 [arXiv:1303.0112] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  34. [34]
    Y. Sato and K. Yoshida, Potential Analysis in Holographic Schwinger Effect, JHEP 08 (2013) 002 [arXiv:1304.7917] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  35. [35]
    Y. Sato and K. Yoshida, Holographic Schwinger effect in confining phase, JHEP 09 (2013) 134 [arXiv:1306.5512] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    Y. Sato and K. Yoshida, Universal aspects of holographic Schwinger effect in general backgrounds, JHEP 12 (2013) 051 [arXiv:1309.4629] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    D. Kawai, Y. Sato and K. Yoshida, The Schwinger pair production rate in confining theories via holography, Phys. Rev. D 89 (2014) 101901 [arXiv:1312.4341] [INSPIRE].ADSGoogle Scholar
  38. [38]
    M. Sakaguchi, H. Shin and K. Yoshida, No pair production of open strings in a plane-wave background, arXiv:1402.2048 [INSPIRE].
  39. [39]
    A.S. Gorsky, K.A. Saraikin and K.G. Selivanov, Schwinger type processes via branes and their gravity duals, Nucl. Phys. B 628 (2002) 270 [hep-th/0110178] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  40. [40]
    J. Sonner, Holographic Schwinger Effect and the Geometry of Entanglement, Phys. Rev. Lett. 111 (2013) 211603 [arXiv:1307.6850] [INSPIRE].CrossRefADSGoogle Scholar
  41. [41]
    M. Chernicoff, A. Güijosa and J.F. Pedraza, Holographic EPR Pairs, Wormholes and Radiation, JHEP 10 (2013) 211 [arXiv:1308.3695] [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    S. Iwai and H. Okamoto, Ultrafast Phase Control in One-Dimensional Correlated Electron Systems, J. Phys. Soc. Jpn. 75 (2006) 011007.CrossRefADSGoogle Scholar
  43. [43]
    S.Y. Lee, Fixed poles in Compton amplitudes and bound-state nature of the physical nucleon, Nucl. Phys. B 45 (1972) 449 [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    M. Först et al., Nonlinear phononics as an ultrafast route to lattice control, Nature Phys. 7 (2011) 854.CrossRefADSGoogle Scholar
  45. [45]
    C. Barcelo, S. Liberati, S. Sonego and M. Visser, Hawking-like radiation from evolving black holes and compact horizonless objects, JHEP 02 (2011) 003 [arXiv:1011.5911] [INSPIRE].MathSciNetADSGoogle Scholar
  46. [46]
    S. Kinoshita and N. Tanahashi, Hawking temperature for near-equilibrium black holes, Phys. Rev. D 85 (2012) 024050 [arXiv:1111.2684] [INSPIRE].ADSGoogle Scholar
  47. [47]
    M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Meson spectroscopy in AdS/CFT with flavor, JHEP 07 (2003) 049 [hep-th/0304032] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  48. [48]
    A. Karch and A. O’Bannon, Holographic thermodynamics at finite baryon density: Some exact results, JHEP 11 (2007) 074 [arXiv:0709.0570] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  49. [49]
    S. Kobayashi, D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite baryon density, JHEP 02 (2007) 016 [hep-th/0611099] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  50. [50]
    K.-Y. Kim, J.P. Shock and J. Tarrio, The open string membrane paradigm with external electromagnetic fields, JHEP 06 (2011) 017 [arXiv:1103.4581] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  51. [51]
    S. Nakamura and H. Ooguri, Out of Equilibrium Temperature from Holography, Phys. Rev. D 88 (2013) 126003 [arXiv:1309.4089] [INSPIRE].ADSGoogle Scholar
  52. [52]
    S. Nakamura, Nonequilibrium Phase Transitions and Nonequilibrium Critical Point from AdS/CFT, Phys. Rev. Lett. 109 (2012) 120602 [arXiv:1204.1971] [INSPIRE].CrossRefADSGoogle Scholar
  53. [53]
    N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  54. [54]
    G.W. Gibbons and C.A.R. Herdeiro, Born-Infeld theory and stringy causality, Phys. Rev. D 63 (2001) 064006 [hep-th/0008052] [INSPIRE].MathSciNetADSGoogle Scholar
  55. [55]
    G.W. Gibbons, Pulse propagation in Born-Infeld theory: The World volume equivalence principle and the Hagedorn-like equation of state of the Chaplygin gas, Grav. Cosmol. 8 (2002) 2 [hep-th/0104015] [INSPIRE].MathSciNetMATHADSGoogle Scholar
  56. [56]
    G. Gibbons, K. Hashimoto and P. Yi, Tachyon condensates, Carrollian contraction of Lorentz group and fundamental strings, JHEP 09 (2002) 061 [hep-th/0209034] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  57. [57]
    S.R. Das, D.A. Galante and R.C. Myers, Universal scaling in fast quantum quenches in conformal field theories, Phys. Rev. Lett. 112 (2014) 171601 [arXiv:1401.0560] [INSPIRE].CrossRefADSGoogle Scholar
  58. [58]
    P. Bizon and A. Rostworowski, On weakly turbulent instability of anti-de Sitter space, Phys. Rev. Lett. 107 (2011) 031102 [arXiv:1104.3702] [INSPIRE].CrossRefADSGoogle Scholar
  59. [59]
    N.D. Birrell and P.C.W. Davis, Quantum Fields in Curved Space, Cambridge University Press, Cambridge U.K. (1984).MATHGoogle Scholar
  60. [60]
    Y. Taguchi, T. Matsumoto and Y. Tokura, Dielectric breakdown of one-dimensional Mott insulators Sr 2 CuO 3 and SrCuO 2, Phys. Rev. B 62 (2000) 7015.CrossRefADSGoogle Scholar
  61. [61]
    S. Iwai et al., Ultrafast optical switching to a metallic state by photo induced Mott transition in a halogen-bridged nuckel-chain compound, Phys. Rev. Lett. 91 (2003) 057401.CrossRefADSGoogle Scholar
  62. [62]
    S. Wall et al., Quantum interference between charge excitation paths in a solid-state Mott insulator, Nature Phys. 7 (2011) 114.CrossRefADSGoogle Scholar
  63. [63]
    T. Suzuki and R. Shimano, Exciton Mott Transition in Si Revealed by Terahertz Spectroscopy, Phys. Rev. Lett. 109 (2012) 046402.CrossRefADSGoogle Scholar
  64. [64]
    T. Oka, R. Arita and P. Werner, Breakdown of a Mott Insulator: A Nonadiabatic Tunneling Mechanism, Phys. Rev. Lett. 91 (2003) 066406.CrossRefADSGoogle Scholar
  65. [65]
    M. Eckstein, T. Oka and P. Werner, Dielectric Breakdown of Mott Insulators in Dynamical Mean-Field Theory, Phys. Rev. Lett. 105 (2010) 146404.CrossRefADSGoogle Scholar
  66. [66]
    T. Oka, Nonlinear doublon production in a Mott insulator: Landau-Dykhne method applied to an integrable model, Phys. Rev. B 86 (2012) 075148 [arXiv:1105.3145] [INSPIRE].CrossRefADSGoogle Scholar
  67. [67]
    H. Aoki, N. Tsuji, M. Eckstein, M. Kollar, T. Oka and P. Werner, Nonequilibrium dynamical mean-field theory and its applications, Rev. Mod. Phys. 86 (2014) 779 [arXiv:1310.5329].CrossRefADSGoogle Scholar
  68. [68]
    T. Yoshioka and K. Asano, Exciton-Mott Physics in a Quasi-One-Dimensional Electron-Hole System, Phys. Rev. Lett. 107 (2011) 256403.CrossRefADSGoogle Scholar
  69. [69]
    S.A. Moskalenko and D.W. Snoke, Bose-Einstein Condensation of Excitons and Biexcitons, Cambridge University Press, Cambridge U.K. (2000).CrossRefGoogle Scholar
  70. [70]
    M. Imada, A. Fujimori and Y. Tokura, Metal-insulator transitions, Rev. Mod. Phys. 70 (1998) 1039 [INSPIRE].CrossRefADSGoogle Scholar
  71. [71]
    E. Brézin and C. Itzykson, Pair production in vacuum by an alternating field, Phys. Rev. D 2 (1970) 1191 [INSPIRE].ADSGoogle Scholar
  72. [72]
    V.S. Popov, Pair Production in a Variable External Field (Quasiclassical approximation), Sov. Phys. JETP 34 (1972) 709.ADSGoogle Scholar
  73. [73]
    N.F. Mott, The transition to the metallic state, Philos. Mag. 6 (1961) 287.CrossRefADSGoogle Scholar
  74. [74]
    N.F. Mott, Metal-Insulator Transition, Rev. Mod. Phys. 40 (1968) 677 [INSPIRE].CrossRefADSGoogle Scholar
  75. [75]
    R. Zimmermann, K. Kilimann, W. D. Kraeft, D. Kremp and G. Röpke, Dynamical screening and self-energy of excitons in the electron-hole plasma, Phys. Status Solidi B 90 (1978) 175.CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Koji Hashimoto
    • 1
    • 2
  • Shunichiro Kinoshita
    • 3
  • Keiju Murata
    • 4
  • Takashi Oka
    • 5
  1. 1.Department of PhysicsOsaka UniversityToyonakaJapan
  2. 2.Mathematical Physics Lab.RIKEN Nishina CenterSaitamaJapan
  3. 3.Osaka City University Advanced Mathematical InstituteOsakaJapan
  4. 4.Keio UniversityYokohamaJapan
  5. 5.Department of Applied PhysicsUniversity of TokyoTokyoJapan

Personalised recommendations