Advertisement

Journal of High Energy Physics

, 2014:83 | Cite as

Correlators of chiral primaries and 1/8 BPS Wilson loops from perturbation theory

  • Marisa Bonini
  • Luca Griguolo
  • Michelangelo Preti
Open Access
Article

Abstract

We study at perturbative level the correlation functions of a general class of 1/8 BPS Wilson loops and chiral primaries in \( \mathcal{N} \) = 4 Super Yang-Mills theory. The contours and the location of operator insertions share a sphere S 2 embedded into space-time and the system preserves at least two supercharges. We perform explicit two-loop computations, for some particular but still rather general configuration, that confirm the elegant results expected from localization procedure. We find notably full consistency with the multi-matrix model averages, obtained from 2D Yang-Mills theory on the sphere, when interacting diagrams do not cancel and contribute non-trivially to the final answer.

Keywords

Wilson ’t Hooft and Polyakov loops Supersymmetric gauge theory Duality in Gauge Field Theories 1/N Expansion 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  2. [2]
    N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, hep-th/0306238 [INSPIRE].
  3. [3]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  4. [4]
    A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  5. [5]
    J. Gomis, T. Okuda and V. Pestun, Exact results fort Hooft loops in gauge theories on S 4, JHEP 05 (2012) 141 [arXiv:1105.2568] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  6. [6]
    N. Drukker, T. Okuda and F. Passerini, Exact results for vortex loop operators in 3d supersymmetric theories, JHEP 07 (2014) 137 [arXiv:1211.3409] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    J.K. Erickson, G.W. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  8. [8]
    N. Drukker and D.J. Gross, An exact prediction of \( \mathcal{N} \) = 4 SUSYM theory for string theory, J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  9. [9]
    F. Passerini and K. Zarembo, Wilson loops in \( \mathcal{N} \) = 2 super-Yang-Mills from matrix model, JHEP 09 (2011) 102 [Erratum ibid. 1110 (2011) 065] [arXiv:1106.5763] [INSPIRE].
  10. [10]
    J.G. Russo and K. Zarembo, Large-N limit of N = 2 SU(N ) gauge theories from localization, JHEP 10 (2012) 082 [arXiv:1207.3806] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  11. [11]
    F. Bigazzi, A.L. Cotrone, L. Griguolo and D. Seminara, A novel cross-check of localization and non conformal holography, JHEP 03 (2014) 072 [arXiv:1312.4561] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Supersymmetric Wilson loops on S 3, JHEP 05 (2008) 017 [arXiv:0711.3226] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  13. [13]
    A. Dymarsky and V. Pestun, Supersymmetric Wilson loops in \( \mathcal{N} \) = 4 SYM and pure spinors, JHEP 04 (2010) 115 [arXiv:0911.1841] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  14. [14]
    V. Cardinali, L. Griguolo and D. Seminara, Impure Aspects of Supersymmetric Wilson Loops, JHEP 06 (2012) 167 [arXiv:1202.6393] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  15. [15]
    A. Bassetto and L. Griguolo, Two-dimensional QCD, instanton contributions and the perturbative Wu-Mandelstam-Leibbrandt prescription, Phys. Lett. B 443 (1998) 325 [hep-th/9806037] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    V. Pestun, Localization of the four-dimensional \( \mathcal{N} \) = 4 SYM to a two-sphere and 1/8 BPS Wilson loops, JHEP 12 (2012) 067 [arXiv:0906.0638] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  17. [17]
    G.W. Moore, N. Nekrasov and S. Shatashvili, Integrating over Higgs branches, Commun. Math. Phys. 209 (2000) 97 [hep-th/9712241] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  18. [18]
    A.A. Gerasimov and S.L. Shatashvili, Higgs Bundles, Gauge Theories and Quantum Groups, Commun. Math. Phys. 277 (2008) 323 [hep-th/0609024] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  19. [19]
    A.A. Gerasimov and S.L. Shatashvili, Two-dimensional gauge theories and quantum integrable systems, arXiv:0711.1472 [INSPIRE].
  20. [20]
    S. Giombi, V. Pestun and R. Ricci, Notes on supersymmetric Wilson loops on a two-sphere, JHEP 07 (2010) 088 [arXiv:0905.0665] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  21. [21]
    A. Bassetto, L. Griguolo, F. Pucci and D. Seminara, Supersymmetric Wilson loops at two loops, JHEP 06 (2008) 083 [arXiv:0804.3973] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  22. [22]
    D. Young, BPS Wilson Loops on S 2 at Higher Loops, JHEP 05 (2008) 077 [arXiv:0804.4098] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    A. Bassetto et al., Correlators of supersymmetric Wilson-loops, protected operators and matrix models in \( \mathcal{N} \) = 4 SYM, JHEP 08 (2009) 061 [arXiv:0905.1943] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  24. [24]
    A. Bassetto et al., Correlators of supersymmetric Wilson loops at weak and strong coupling, JHEP 03 (2010) 038 [arXiv:0912.5440] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  25. [25]
    S. Giombi and V. Pestun, The 1/2 BPSt Hooft loops in \( \mathcal{N} \) = 4 SYM as instantons in 2d Yang-Mills, J. Phys. A 46 (2013) 095402 [arXiv:0909.4272] [INSPIRE].MathSciNetADSGoogle Scholar
  26. [26]
    D. Correa, J. Henn, J. Maldacena and A. Sever, An exact formula for the radiation of a moving quark in \( \mathcal{N} \) = 4 super Yang-Mills, JHEP 06 (2012) 048 [arXiv:1202.4455] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  27. [27]
    B. Fiol, B. Garolera and A. Lewkowycz, Exact results for static and radiative fields of a quark in \( \mathcal{N} \) = 4 super Yang-Mills, JHEP 05 (2012) 093 [arXiv:1202.5292] [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    N. Gromov and A. Sever, Analytic Solution of Bremsstrahlung TBA, JHEP 11 (2012) 075 [arXiv:1207.5489] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  29. [29]
    N. Gromov, F. Levkovich-Maslyuk and G. Sizov, Analytic Solution of Bremsstrahlung TBA II: Turning on the Sphere Angle, JHEP 10 (2013) 036 [arXiv:1305.1944] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  30. [30]
    S. Giombi and V. Pestun, Correlators of local operators and 1/8 BPS Wilson loops on S 2 from 2d YM and matrix models, JHEP 10 (2010) 033 [arXiv:0906.1572] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  31. [31]
    G.W. Semenoff and K. Zarembo, More exact predictions of SUSYM for string theory, Nucl. Phys. B 616 (2001) 34 [hep-th/0106015] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  32. [32]
    G.W. Semenoff and D. Young, Exact 1/4 BPS Loop: Chiral primary correlator, Phys. Lett. B 643 (2006) 195 [hep-th/0609158] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  33. [33]
    S. Giombi and V. Pestun, Correlators of Wilson Loops and Local Operators from Multi-Matrix Models and Strings in AdS, JHEP 01 (2013) 101 [arXiv:1207.7083] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  34. [34]
    K. Zarembo, Holographic three-point functions of semiclassical states, JHEP 09 (2010) 030 [arXiv:1008.1059] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  35. [35]
    M.S. Costa, R. Monteiro, J.E. Santos and D. Zoakos, On three-point correlation functions in the gauge/gravity duality, JHEP 11 (2010) 141 [arXiv:1008.1070] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  36. [36]
    J. Escobedo, N. Gromov, A. Sever and P. Vieira, Tailoring three-point functions and integrability, JHEP 09 (2011) 028 [arXiv:1012.2475] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  37. [37]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, \( \mathcal{N} \) = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  38. [38]
    V. Cardinali, L. Griguolo, G. Martelloni and D. Seminara, New supersymmetric Wilson loops in ABJ(M) theories, Phys. Lett. B 718 (2012) 615 [arXiv:1209.4032] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  39. [39]
    M.S. Bianchi, L. Griguolo, M. Leoni, S. Penati and D. Seminara, BPS Wilson loops and Bremsstrahlung function in ABJ(M): a two loop analysis, JHEP 06 (2014) 123 [arXiv:1402.4128] [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    N. Drukker, 1/4 BPS circular loops, unstable world-sheet instantons and the matrix model, JHEP 09 (2006) 004 [hep-th/0605151] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  41. [41]
    N. Drukker and J. Plefka, Superprotected n-point correlation functions of local operators in \( \mathcal{N} \) =4 super Yang-Mills, JHEP 04 (2009) 052 [arXiv:0901.3653] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  42. [42]
    A.A. Migdal, Gauge Transitions in Gauge and Spin Lattice Systems, Sov. Phys. JETP 42 (1975) 743 [Zh. Eksp. Teor. Fiz. 69 (1975) 1457] [INSPIRE].
  43. [43]
    E. Witten, On quantum gauge theories in two-dimensions, Commun. Math. Phys. 141 (1991) 153 [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  44. [44]
    N. Beisert, C. Kristjansen, J. Plefka, G.W. Semenoff and M. Staudacher, BMN correlators and operator mixing in \( \mathcal{N} \) = 4 super Yang-Mills theory, Nucl. Phys. B 650 (2003) 125 [hep-th/0208178] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Marisa Bonini
    • 1
  • Luca Griguolo
    • 1
  • Michelangelo Preti
    • 1
  1. 1.Dipartimento di FisicaUniversità di Parma and INFN Gruppo Collegato di ParmaParmaItaly

Personalised recommendations