Journal of High Energy Physics

, 2013:130 | Cite as

Dynamics of non-supersymmetric flavours

  • M. Sohaib Alam
  • Matthias Ihl
  • Arnab Kundu
  • Sandipan Kundu


We investigate the effect of the back-reaction by non-supersymmetric probes in the Kuperstein-Sonnenschein model. In the limit where the back-reaction is small, we discuss physical properties of the back-reacted geometry. We further introduce additional probe flavours in this back-reacted geometry and study in detail the phase structure of this sector when a constant electromagnetic field or a chemical potential are present. We find that the Landau pole, which serves as the UV cut-off of the background geometry, also serves as an important scale in the corresponding thermodynamics of the additional flavour sector. We note that since these additional probe flavours are indistinguishable from the back-reacting flavours, the results we obtain point to a much richer phase structure of the system.


Quark-Gluon Plasma Gauge-gravity correspondence AdS-CFT Correspondence Holography and quark-gluon plasmas 


  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  2. [2]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  3. [3]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    S. Kuperstein and J. Sonnenschein, A new holographic model of chiral symmetry breaking, JHEP 09 (2008) 012 [arXiv:0807.2897] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    A. Dymarsky, S. Kuperstein and J. Sonnenschein, Chiral symmetry breaking with non-SUSY D7-branes in ISD backgrounds, JHEP 08 (2009) 005 [arXiv:0904.0988] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    M.S. Alam, V.S. Kaplunovsky and A. Kundu, Chiral symmetry breaking and external fields in the Kuperstein-Sonnenschein model, JHEP 04 (2012) 111 [arXiv:1202.3488] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    F. Bigazzi, R. Casero, A. Cotrone, E. Kiritsis and A. Paredes, Non-critical holography and four-dimensional CFTs with fundamentals, JHEP 10 (2005) 012 [hep-th/0505140] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    R. Casero, C. Núñez and A. Paredes, Towards the string dual of N = 1 SQCD-like theories, Phys. Rev. D 73 (2006) 086005 [hep-th/0602027] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A. Paredes, On unquenched N = 2 holographic flavor, JHEP 12 (2006) 032 [hep-th/0610270] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    F. Benini, F. Canoura, S. Cremonesi, C. Núñez and A.V. Ramallo, Unquenched flavors in the Klebanov-Witten model, JHEP 02 (2007) 090 [hep-th/0612118] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    F. Benini, F. Canoura, S. Cremonesi, C. Núñez and A.V. Ramallo, Backreacting flavors in the Klebanov-Strassler background, JHEP 09 (2007) 109 [arXiv:0706.1238] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    E. Caceres, R. Flauger, M. Ihl and T. Wrase, New supergravity backgrounds dual to N = 1 SQCD-like theories with N f = 2N c, JHEP 03 (2008) 020 [arXiv:0711.4878] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    C. Núñez, A. Paredes and A.V. Ramallo, Unquenched flavor in the gauge/gravity correspondence, Adv. High Energy Phys. 2010 (2010) 196714 [arXiv:1002.1088] [INSPIRE].Google Scholar
  16. [16]
    M. Ihl, A. Kundu and S. Kundu, Back-reaction of Non-supersymmetric Probes: Phase Transition and Stability, JHEP 12 (2012) 070 [arXiv:1208.2663] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    C. Bonati, P. de Forcrand, M. D’Elia, O. Philipsen and F. Sanfilippo, Constraints on the two-flavor QCD phase diagram from imaginary chemical potential, PoS(LATTICE 2011)189 [arXiv:1201.2769] [INSPIRE].
  18. [18]
    J. Casalderrey-Solana and D. Teaney, Heavy quark diffusion in strongly coupled N = 4 Yang-Mills, Phys. Rev. D 74 (2006) 085012 [hep-ph/0605199] [INSPIRE].ADSGoogle Scholar
  19. [19]
    S.S. Gubser, D.R. Gulotta, S.S. Pufu and F.D. Rocha, Gluon energy loss in the gauge-string duality, JHEP 10 (2008) 052 [arXiv:0803.1470] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, Radiative energy loss and p T broadening of high-energy partons in nuclei, Nucl. Phys. B 484 (1997) 265 [hep-ph/9608322] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    H. Liu, K. Rajagopal and U.A. Wiedemann, Calculating the jet quenching parameter from AdS/CFT, Phys. Rev. Lett. 97 (2006) 182301 [hep-ph/0605178] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    C. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L. Yaffe, Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013 [hep-th/0605158] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    S.S. Gubser, Drag force in AdS/CFT, Phys. Rev. D 74 (2006) 126005 [hep-th/0605182] [INSPIRE].MathSciNetADSGoogle Scholar
  24. [24]
    N. Armesto, J.D. Edelstein and J. Mas, Jet quenching at finitet Hooft coupling and chemical potential from AdS/CFT, JHEP 09 (2006) 039 [hep-ph/0606245] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    F. Bigazzi et al., D3-D7 quark-gluon plasmas, JHEP 11 (2009) 117 [arXiv:0909.2865] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    C.P. Herzog, Energy loss of heavy quarks from asymptotically AdS geometries, JHEP 09 (2006)032 [hep-th/0605191] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and Anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    A. Brandhuber, N. Itzhaki, J. Sonnenschein and S. Yankielowicz, Wilson loops, confinement and phase transitions in large-N gauge theories from supergravity, JHEP 06 (1998) 001 [hep-th/9803263] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  30. [30]
    A. Brandhuber, N. Itzhaki, J. Sonnenschein and S. Yankielowicz, Wilson loops in the large-N limit at finite temperature, Phys. Lett. B 434 (1998) 36 [hep-th/9803137] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    S.-J. Rey, S. Theisen and J.-T. Yee, Wilson-Polyakov loop at finite temperature in large-N gauge theory and Anti-de Sitter supergravity, Nucl. Phys. B 527 (1998) 171 [hep-th/9803135] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    F. Bigazzi, A.L. Cotrone, A. Paredes and A. Ramallo, Non chiral dynamical flavors and screening on the conifold, Fortsch. Phys. 57 (2009) 514 [arXiv:0810.5220] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  33. [33]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    W. Fischler and S. Kundu, Strongly coupled gauge theories: high and low temperature behavior of non-local observables, JHEP 05 (2013) 098 [arXiv:1212.2643] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    W. Fischler, A. Kundu and S. Kundu, Holographic mutual information at finite temperature, Phys. Rev. D 87 (2013) 126012 [arXiv:1212.4764] [INSPIRE].ADSGoogle Scholar
  37. [37]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    A. Karch and A. O’Bannon, Metallic AdS/CFT, JHEP 09 (2007) 024 [arXiv:0705.3870] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    T. Albash, V.G. Filev, C.V. Johnson and A. Kundu, Quarks in an external electric field in finite temperature large-N gauge theory, JHEP 08 (2008) 092 [arXiv:0709.1554] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    A. Magana, J. Mas, L. Mazzanti and J. Tarrio, Probes on D3-D7 quark-gluon plasmas, JHEP 07 (2012) 058 [arXiv:1205.6176] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    A. Parnachev, Holographic QCD with isospin chemical potential, JHEP 02 (2008) 062 [arXiv:0708.3170] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A. Dymarsky, D. Melnikov and J. Sonnenschein, Attractive holographic baryons, JHEP 06 (2011)145 [arXiv:1012.1616] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    S. Kobayashi, D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite baryon density, JHEP 02 (2007) 016 [hep-th/0611099] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    V.G. Filev, C.V. Johnson, R.C. Rashkov and K.S. Viswanathan, Flavoured large-N gauge theory in an external magnetic field, JHEP 10 (2007) 019 [hep-th/0701001] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    T. Albash, V.G. Filev, C.V. Johnson and A. Kundu, Finite temperature large-N gauge theory with quarks in an external magnetic field, JHEP 07 (2008) 080 [arXiv:0709.1547] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    C.V. Johnson and A. Kundu, External fields and chiral symmetry breaking in the Sakai-Sugimoto model, JHEP 12 (2008) 053 [arXiv:0803.0038] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    V.G. Filev and M. Ihl, Flavoured large-N gauge theory on a compact space with an external magnetic field, JHEP 01 (2013) 130 [arXiv:1211.1164] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    V.G. Filev and D. Zoakos, Towards unquenched holographic magnetic catalysis, JHEP 08 (2011)022 [arXiv:1106.1330] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    F. Preis, A. Rebhan and A. Schmitt, Inverse magnetic catalysis in dense holographic matter, JHEP 03 (2011) 033 [arXiv:1012.4785] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • M. Sohaib Alam
    • 1
  • Matthias Ihl
    • 2
  • Arnab Kundu
    • 1
  • Sandipan Kundu
    • 1
    • 3
  1. 1.Theory Group, Department of PhysicsUniversity of Texas at AustinAustinU.S.A.
  2. 2.School of Theoretical PhysicsDublin Institute for Advanced StudiesDublin 4Ireland
  3. 3.Texas Cosmology CenterUniversity of Texas at AustinAustinU.S.A.

Personalised recommendations