Advertisement

Journal of High Energy Physics

, 2013:125 | Cite as

Anomaly mediation from unbroken supergravity

  • Francesco D’Eramo
  • Jesse Thaler
  • Zachary Thomas
Article

Abstract

When supergravity (SUGRA) is spontaneously broken, it is well known that anomaly mediation generates sparticle soft masses proportional to the gravitino mass. Recently, we showed that one-loop anomaly-mediated gaugino masses should be associated with unbroken supersymmetry (SUSY). This counterintuitive result arises because the underlying symmetry structure of (broken) SUGRA in flat space is in fact (unbroken) SUSY in anti-de Sitter (AdS) space. When quantum corrections are regulated in a way that preserves SUGRA, the underlying AdS curvature (proportional to the gravitino mass) necessarily appears in the regulated action, yielding soft masses without corresponding goldstino couplings. In this paper, we extend our analysis of anomaly mediation to sfermion soft masses. Already at tree-level we encounter a number of surprises, including the fact that zero soft masses correspond to broken (AdS) SUSY. At one-loop, we explain how anomaly mediation appears when regulating SUGRA in a way that preserves super-Weyl invariance. We find that recent claims in the literature about the non-existence of anomaly mediation were based on a Wilsonian effective action with residual gauge dependence, and the gauge-invariant 1PI effective action contains the expected anomaly-mediated spectrum. Finally, we calculate the sfermion spectrum to all orders, and use supertrace relations to derive the familiar two-loop soft masses from minimal anomaly mediation, as well as unfamiliar tree-level and one-loop goldstino couplings consistent with renormalization group invariance.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    F. D’Eramo, J. Thaler and Z. Thomas, The two faces of anomaly mediation, JHEP 06 (2012) 151 [arXiv:1202.1280] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J.P. Conlon, M. Goodsell and E. Palti, Anomaly mediation in superstring theory, Fortsch. Phys. 59 (2011) 5 [arXiv:1008.4361] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  5. [5]
    Z. Chacko, M.A. Luty, I. Maksymyk and E. Ponton, Realistic anomaly mediated supersymmetry breaking, JHEP 04 (2000) 001 [hep-ph/9905390] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    J.A. Bagger, T. Moroi and E. Poppitz, Anomaly mediation in supergravity theories, JHEP 04 (2000) 009 [hep-th/9911029] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    J.A. Bagger, T. Moroi and E. Poppitz, Quantum inconsistency of Einstein supergravity, Nucl. Phys. B 594 (2001) 354 [hep-th/0003282] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    M. Dine and N. Seiberg, Comments on quantum effects in supergravity theories, JHEP 03 (2007) 040 [hep-th/0701023] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    B. Gripaios, H.D. Kim, R. Rattazzi, M. Redi and C. Scrucca, Gaugino mass in AdS space, JHEP 02 (2009) 043 [arXiv:0811.4504] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    D.-W. Jung and J.Y. Lee, Anomaly-mediated supersymmetry breaking demystified, JHEP 03 (2009) 123 [arXiv:0902.0464] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    D. Sanford and Y. Shirman, Anomaly Mediation from Randall-Sundrum to Dine-Seiberg, Phys. Rev. D 83 (2011) 125020 [arXiv:1012.1860] [INSPIRE].ADSGoogle Scholar
  12. [12]
    S. de Alwis, On anomaly mediated SUSY breaking, Phys. Rev. D 77 (2008) 105020 [arXiv:0801.0578] [INSPIRE].ADSGoogle Scholar
  13. [13]
    S. de Alwis, AMSB and the logic of spontaneous SUSY breaking, JHEP 01 (2013) 006 [arXiv:1206.6775] [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    V. Kaplunovsky and J. Louis, Field dependent gauge couplings in locally supersymmetric effective quantum field theories, Nucl. Phys. B 422 (1994) 57 [hep-th/9402005] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  16. [16]
    G. Giudice and A. Masiero, A natural solution to the mu problem in supergravity theories, Phys. Lett. B 206 (1988) 480 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    N. Arkani-Hamed, G.F. Giudice, M.A. Luty and R. Rattazzi, Supersymmetry breaking loops from analytic continuation into superspace, Phys. Rev. D 58 (1998) 115005 [hep-ph/9803290] [INSPIRE].ADSGoogle Scholar
  18. [18]
    I. Jack, D. Jones and A. Pickering, Renormalization invariance and the soft β-functions, Phys. Lett. B 426 (1998) 73 [hep-ph/9712542] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    I. Jack and D. Jones, RG invariant solutions for the soft supersymmetry breaking parameters, Phys. Lett. B 465 (1999) 148 [hep-ph/9907255] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. Pomarol and R. Rattazzi, Sparticle masses from the superconformal anomaly, JHEP 05 (1999) 013 [hep-ph/9903448] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    H. Nicolai, Representations of supersymmetry in anti-de Sitter space, CERN-TH-3882.
  22. [22]
    D. Bertolini, J. Thaler and Z. Thomas, TASI 2012: Super-Tricks for Superspace, arXiv:1302.6229 [INSPIRE].
  23. [23]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992).Google Scholar
  24. [24]
    A. Adams, H. Jockers, V. Kumar and J.M. Lapan, N = 1 σ-models in AdS 4, JHEP 12 (2011) 042 [arXiv:1104.3155] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    G. Festuccia and N. Seiberg, Rigid supersymmetric theories in curved superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    C. Cheung, Y. Nomura and J. Thaler, Goldstini, JHEP 03 (2010) 073 [arXiv:1002.1967] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    C. Cheung, F. D’Eramo and J. Thaler, The spectrum of goldstini and modulini, JHEP 08 (2011) 115 [arXiv:1104.2600] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    K. Izawa, Y. Nakai and T. Shimomura, Higgs portal to visible supersymmetry breaking, JHEP 03 (2011) 007 [arXiv:1101.4633] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    D. Bertolini, K. Rehermann and J. Thaler, Visible supersymmetry breaking and an invisible Higgs, JHEP 04 (2012) 130 [arXiv:1111.0628] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M.A. Luty and R. Sundrum, Supersymmetry breaking and composite extra dimensions, Phys. Rev. D 65 (2002) 066004 [hep-th/0105137] [INSPIRE].MathSciNetADSGoogle Scholar
  31. [31]
    M. Luty and R. Sundrum, Anomaly mediated supersymmetry breaking in four-dimensions, naturally, Phys. Rev. D 67 (2003) 045007 [hep-th/0111231] [INSPIRE].MathSciNetADSGoogle Scholar
  32. [32]
    M. Schmaltz and R. Sundrum, Conformal sequestering simplified, JHEP 11 (2006) 011 [hep-th/0608051] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    M. Roček, Linearizing the Volkov-Akulov model, Phys. Rev. Lett. 41 (1978) 451 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    U. Lindström and M. Roček, Constrained local superfields, Phys. Rev. D 19 (1979) 2300 [INSPIRE].ADSGoogle Scholar
  35. [35]
    Z. Komargodski and N. Seiberg, From linear SUSY to constrained superfields, JHEP 09 (2009) 066 [arXiv:0907.2441] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    M.K. Gaillard and V. Jain, Supergravity coupled to chiral matter at one loop, Phys. Rev. D 49 (1994) 1951 [hep-th/9308090] [INSPIRE].ADSGoogle Scholar
  37. [37]
    M.K. Gaillard, V. Jain and K. Saririan, Supergravity at one loop. 2: Chiral and Yang-Mills matter, Phys. Rev. D 55 (1997) 883 [hep-th/9606052] [INSPIRE].MathSciNetADSGoogle Scholar
  38. [38]
    W. Siegel and S.J. Gates Jr., Superfield supergravity, Nucl. Phys. B 147 (1979) 77 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    T. Kugo and S. Uehara, Conformal and Poincaré Tensor Calculi in N = 1 Supergravity, Nucl. Phys. B 226 (1983) 49 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    S. Gates, M.T. Grisaru, M. Roček and W. Siegel, Superspace or one thousand and one lessons in supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [INSPIRE].Google Scholar
  41. [41]
    P.S. Howe and R. Tucker, Scale invariance in superspace, Phys. Lett. B 80 (1978) 138 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    B.J. Warr, Renormalization of gauge theories using effective Lagrangians. 1., Annals Phys. 183 (1988) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    B.J. Warr, Renormalization of gauge theories using effective Lagrangians. 2., Annals Phys. 183 (1988) 59 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    K. Konishi, Anomalous supersymmetry transformation of some composite operators in SQCD, Phys. Lett. B 135 (1984) 439 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    T. Clark, O. Piguet and K. Sibold, The Absence of Radiative Corrections to the Axial Current Anomaly in Supersymmetric QED, Nucl. Phys. B 159 (1979) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M.K. Gaillard, Pauli-Villars regularization of globally supersymmetric theories, Phys. Lett. B 347 (1995) 284 [hep-th/9412125] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    C. Cheung, F. D’Eramo and J. Thaler, Supergravity computations without gravity complications, Phys. Rev. D 84 (2011) 085012 [arXiv:1104.2598] [INSPIRE].ADSGoogle Scholar
  48. [48]
    D. Baumann and D. Green, Supergravity for effective theories, JHEP 03 (2012) 001 [arXiv:1109.0293] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    B. de Wit and I. Herger, Anti-de Sitter supersymmetry, Lect. Notes Phys. 541 (2000) 79 [hep-th/9908005] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    B. Keck, An alternative class of supersymmetries, J. Phys. A 8 (1975) 1819 [INSPIRE].MathSciNetADSGoogle Scholar
  51. [51]
    B. Zumino, Nonlinear realization of supersymmetry in de Sitter space, Nucl. Phys. B 127 (1977) 189 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    E. Ivanov and A.S. Sorin, Superfield formulation of OSP(1, 4) supersymmetry, J. Phys. A 13 (1980) 1159 [INSPIRE].MathSciNetADSGoogle Scholar
  53. [53]
    A. Lahanas and D.V. Nanopoulos, The road to no scale supergravity, Phys. Rept. 145 (1987) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M.A. Luty and N. Okada, Almost no scale supergravity, JHEP 04 (2003) 050 [hep-th/0209178] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    M. Kaku, P. Townsend and P. van Nieuwenhuizen, Gauge theory of the conformal and superconformal group, Phys. Lett. B 69 (1977) 304 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    M. Kaku and P. Townsend, Poincaré supergravity as broken superconformal gravity, Phys. Lett. B 76 (1978) 54 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    M. Kaku, P. Townsend and P. van Nieuwenhuizen, Properties of conformal supergravity, Phys. Rev. D 17 (1978) 3179 [INSPIRE].ADSGoogle Scholar
  58. [58]
    P. Townsend and P. van Nieuwenhuizen, Simplifications of Conformal Supergravity, Phys. Rev. D 19 (1979) 3166 [INSPIRE].ADSGoogle Scholar
  59. [59]
    T. Kugo and S. Uehara, Improved Superconformal Gauge Conditions in the N = 1 Supergravity Yang-Mills Matter System, Nucl. Phys. B 222 (1983) 125 [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    H.K. Dreiner, H.E. Haber and S.P. Martin, Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry, Phys. Rept. 494 (2010) 1 [arXiv:0812.1594] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Francesco D’Eramo
    • 1
    • 2
  • Jesse Thaler
    • 3
  • Zachary Thomas
    • 3
  1. 1.Department of PhysicsUniversity of CaliforniaBerkeleyU.S.A.
  2. 2.Theoretical Physics GroupLawrence Berkeley National LaboratoryBerkeleyU.S.A.
  3. 3.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations