Journal of High Energy Physics

, 2013:99 | Cite as

Implications of light charginos for Higgs observables, LHC searches and dark matter

  • J. Alberto Casas
  • Jesús M. Moreno
  • Krzysztof Rolbiecki
  • Bryan Zaldívar


A rather high Higgs mass, m h ≃ 126 GeV, suggests that at least a part of the supersymmetric spectrum of the MSSM may live beyond \( \mathcal{O}\left( {1\;\mathrm{TeV}} \right) \) and hence inaccessible to the LHC. However, there are theoretical and phenomenological reasons supporting a possibility that charginos and neutralinos remain much closer to the electroweak scale. In this paper, we explore such a scenario in the light of recent Higgs measurements, mainly its di-photon decay rate, where the data might indicate a slight excess over the SM prediction. That excess could be fitted by the contribution of light charginos provided tan β is low to moderate, a possibility that is receiving much attention for other theoretical reasons. We investigate the implications of this scenario for other observables, such as dark matter constraints, electroweak observables and experimental signals at the LHC, like dilepton, tri-lepton and same-sign dilepton. An important part of the models survive all the constraints and are able to give positive signals at LHC-14TeV and/or XENON1T.


Supersymmetry Phenomenology 


  1. [1]
    ATLAS collaboration, Combined measurements of the mass and signal strength of the Higgs-like boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-014 (2013).
  2. [2]
    CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005 (2013).
  3. [3]
    M. Farina et al., Implications of XENON100 and LHC results for dark matter models, Nucl. Phys. B 853 (2011) 607 [arXiv:1104.3572] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    C. Balázs, A. Buckley, D. Carter, B. Farmer and M. White, Should we still believe in constrained supersymmetry?, arXiv:1205.1568 [INSPIRE].
  5. [5]
    S. Akula, P. Nath and G. Peim, Implications of the Higgs boson discovery for mSUGRA, Phys. Lett. B 717 (2012) 188 [arXiv:1207.1839] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    O. Buchmueller et al., The CMSSM and NUHM1 in light of 7 TeV LHC, B sμ + μ and XENON100 data, Eur. Phys. J. C 72 (2012) 2243 [arXiv:1207.7315] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Arbey, M. Battaglia, A. Djouadi and F. Mahmoudi, The Higgs sector of the phenomenological MSSM in the light of the Higgs boson discovery, JHEP 09 (2012) 107 [arXiv:1207.1348] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    C. Strege et al., Global fits of the CMSSM and NUHM including the LHC Higgs discovery and new XENON100 constraints, JCAP 04 (2013) 013 [arXiv:1212.2636] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M.E. Cabrera, J.A. Casas and R.R. de Austri, The health of SUSY after the Higgs discovery and the XENON100 data, arXiv:1212.4821 [INSPIRE].
  10. [10]
    G. Bélanger, F. Boudjema, F. Donato, R. Godbole and S. Rosier-Lees, SUSY Higgs at the LHC: effects of light charginos and neutralinos, Nucl. Phys. B 581 (2000) 3 [hep-ph/0002039] [INSPIRE].ADSGoogle Scholar
  11. [11]
    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    G. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65–89] [hep-ph/0406088] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 fb−1 of proton-proton collision data, ATLAS-CONF-2013-012 (2013).
  14. [14]
    CMS collaboration, Updated measurements of the Higgs boson at 125 GeV in the two photon decay channel, CMS-PAS-HIG-13-001 (2013).
  15. [15]
    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunters guide, Front. Phys. 80 (2000) 1.Google Scholar
  16. [16]
    M.A. Diaz and P. Fileviez Perez, Can we distinguish between h SM and h 0 in split supersymmetry?, J. Phys. G 31 (2005) 563 [hep-ph/0412066] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Carena, S. Gori, N.R. Shah, C.E. Wagner and L.-T. Wang, Light stau phenomenology and the Higgs γγ Rate, JHEP 07 (2012) 175 [arXiv:1205.5842] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    E. Arganda, J.L. Diaz-Cruz and A. Szynkman, Slim SUSY, Phys. Lett. B 722 (2013) 100 [arXiv:1301.0708] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  22. [22]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  23. [23]
    K. Benakli, M.D. Goodsell and F. Staub, Dirac gauginos and the 125 GeV Higgs, JHEP 06 (2013) 073 [arXiv:1211.0552] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    R. Huo, G. Lee, A.M. Thalapillil and C.E. Wagner, SU(2) ⊗ SU(2) gauge extensions of the MSSM revisited, Phys. Rev. D 87 (2013) 055011 [arXiv:1212.0560] [INSPIRE].ADSGoogle Scholar
  25. [25]
    J. Cao, L. Wu, P. Wu and J.M. Yang, The Z+photon and diphoton decays of the Higgs boson as a joint probe of low energy SUSY models at LHC, arXiv:1301.4641 [INSPIRE].
  26. [26]
    Planck collaboration, P. Ade et al., Planck 2013 results. XXII. Constraints on inflation, arXiv:1303.5082 [INSPIRE].
  27. [27]
    XENON100 collaboration, L.S. Lavina, Latest results from XENON100 data, arXiv:1305.0224 [INSPIRE].
  28. [28]
    A. Falkowski, F. Riva and A. Urbano, Higgs at last, arXiv:1303.1812 [INSPIRE].
  29. [29]
    P.P. Giardino, K. Kannike, I. Masina, M. Raidal and A. Strumia, The universal Higgs fit, arXiv:1303.3570 [INSPIRE].
  30. [30]
    G. Bélanger, B. Dumont, U. Ellwanger, J. Gunion and S. Kraml, Status of invisible Higgs decays, Phys. Lett. B 723 (2013) 340 [arXiv:1302.5694] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Djouadi and G. Moreau, The couplings of the Higgs boson and its CP properties from fits of the signal strengths and their ratios at the 7 + 8 TeV LHC, arXiv:1303.6591 [INSPIRE].
  32. [32]
    J.R. Espinosa, M. Muhlleitner, C. Grojean and M. Trott, Probing for invisible Higgs decays with global fits, JHEP 09 (2012) 126 [arXiv:1205.6790] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Choudhury and A. Datta, Neutralino dark matter confronted by the LHC constraints on electroweak SUSY signals, arXiv:1305.0928 [INSPIRE].
  34. [34]
    A. Djouadi and J. Quevillon, The MSSM Higgs sector at a high M SU SY : reopening the low tan β regime and heavy Higgs searches, arXiv:1304.1787 [INSPIRE].
  35. [35]
    A. Arbey, M. Battaglia and F. Mahmoudi, Supersymmetric heavy Higgs bosons at the LHC, Phys. Rev. D 88 (2013) 015007 [arXiv:1303.7450] [INSPIRE].ADSGoogle Scholar
  36. [36]
    L.E. Ibáñez and I. Valenzuela, The Higgs mass as a signature of heavy SUSY, JHEP 05 (2013) 064 [arXiv:1301.5167] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. Hebecker, A.K. Knochel and T. Weigand, The Higgs mass from a string-theoretic perspective, Nucl. Phys. B 874 (2013) 1 [arXiv:1304.2767] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  40. [40]
    A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  41. [41]
    M. Muhlleitner, A. Djouadi and Y. Mambrini, SDECAY: a Fortran code for the decays of the supersymmetric particles in the MSSM, Comput. Phys. Commun. 168 (2005) 46 [hep-ph/0311167] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  43. [43]
    A. Djouadi, M. Muhlleitner and M. Spira, Decays of supersymmetric particles: The Program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon. B 38 (2007) 635 [hep-ph/0609292] [INSPIRE].ADSGoogle Scholar
  44. [44]
    M. Cabrera, J. Casas and A. Delgado, Upper bounds on superpartner masses from upper bounds on the Higgs boson mass, Phys. Rev. Lett. 108 (2012) 021802 [arXiv:1108.3867] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    G.F. Giudice and A. Strumia, Probing high-scale and split supersymmetry with Higgs mass measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    W. Altmannshofer, A.J. Buras and D. Guadagnoli, The MFV limit of the MSSM for low tan β: Meson mixings revisited, JHEP 11 (2007) 065 [hep-ph/0703200] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A. Arbey, M. Battaglia, F. Mahmoudi and D. Martinez Santos, Supersymmetry confronts B sμ + μ : present and future status, Phys. Rev. D 87 (2013) 035026 [arXiv:1212.4887] [INSPIRE].ADSGoogle Scholar
  48. [48]
    CDMS collaboration, R. Agnese et al., Dark matter search results using the silicon detectors of CDMS II, Phys. Rev. Lett. (2013) [arXiv:1304.4279] [INSPIRE].
  49. [49]
    G. Bélanger et al., Indirect search for dark matter with MicrOMEGAs2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  50. [50]
    S.P. Martin, K. Tobe and J.D. Wells, Virtual effects of light gauginos and higgsinos: a precision electroweak analysis of split supersymmetry, Phys. Rev. D 71 (2005) 073014 [hep-ph/0412424] [INSPIRE].ADSGoogle Scholar
  51. [51]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].ADSGoogle Scholar
  52. [52]
    M. Baak et al., The electroweak fit of the standard model after the discovery of a new boson at the LHC, Eur. Phys. J. C 72 (2012) 2205 [arXiv:1209.2716] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    J. Erler and S. Su, The weak neutral current, Prog. Part. Nucl. Phys. 71 (2013) 119 [arXiv:1303.5522] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    M. Gigg and P. Richardson, Simulation of beyond standard model physics in HERWIG++, Eur. Phys. J. C 51 (2007) 989 [hep-ph/0703199] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].
  57. [57]
    ATLAS collaboration, Measurement of W + W production in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector and limits on anomalous W W Z and W W γ couplings, Phys. Rev. D 87 (2013) 112001 [arXiv:1210.2979] [INSPIRE].ADSGoogle Scholar
  58. [58]
    CMS collaboration, Measurement of W + W and ZZ production cross sections in pp collisions at \( \sqrt{s} \) = 8 TeV, Phys. Lett. B 721 (2013) 190 [arXiv:1301.4698] [INSPIRE].ADSGoogle Scholar
  59. [59]
    W. Beenakker et al., The production of charginos/neutralinos and sleptons at hadron colliders, Phys. Rev. Lett. 83 (1999) 3780 [Erratum ibid. 100 (2008) 029901] [hep-ph/9906298] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    B. Fuks, M. Klasen, D.R. Lamprea and M. Rothering, Precision predictions for electroweak superpartner production at hadron colliders with Resummino, Eur. Phys. J. C 73 (2013) 2480 [arXiv:1304.0790] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    CMS collaboration, Measurement of W W production rate, CMS-PAS-SMP-12-005 (2012).
  62. [62]
    D. Curtin, P. Jaiswal and P. Meade, Charginos hiding in plain sight, Phys. Rev. D 87 (2013), no. 3 031701 [arXiv:1206.6888] [INSPIRE].
  63. [63]
    K. Rolbiecki and K. Sakurai, Light stops emerging in W W cross section measurements?, arXiv:1303.5696 [INSPIRE].
  64. [64]
    ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in 21 fb −1 of pp collisions at \( \sqrt{s} \) = 8TeV with the ATLAS detector, ATLAS-CONF-2013-035 (2013).
  65. [65]
    M.E. Cabrera, J.A. Casas and B. Zaldivar, New techniques for chargino-neutralino detection at LHC, JHEP 08 (2013) 058 [arXiv:1212.5247] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    ATLAS collaboration, Search for direct slepton and gaugino production in final states with two leptons and missing transverse momentum with the ATLAS detector in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Lett. B 718 (2013) 879 [arXiv:1208.2884] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • J. Alberto Casas
    • 1
  • Jesús M. Moreno
    • 1
  • Krzysztof Rolbiecki
    • 1
  • Bryan Zaldívar
    • 1
  1. 1.Instituto de Física Teórica, IFT-UAM/CSIC, U.A.MMadridSpain

Personalised recommendations