Advertisement

Journal of High Energy Physics

, 2013:89 | Cite as

Determination of the neutrino mass ordering by combining PINGU and Daya Bay II

  • Mattias Blennow
  • Thomas Schwetz
Article

Abstract

The relatively large measured value of θ 13 has opened various possibilities to determine the neutrino mass ordering, among them using PINGU, the low-energy extension of the IceCube neutrino telescope, to observe matter effects in atmospheric neutrinos, or a high statistics measurement of the neutrino energy spectrum at a reactor neutrino experiment with a baseline of around 60 km, such as the Daya Bay II project. In this work we point out a synergy between these two approaches based on the fact that when data are analysed with the wrong neutrino mass ordering the best fit occurs at different values of \( \left| {\varDelta m_{31}^2} \right| \) for PINGU and Daya Bay II. Hence, the wrong mass ordering can be excluded by a mismatch of the values inferred for \( \left| {\varDelta m_{31}^2} \right| \), thanks to the excellent accuracy for \( \left| {\varDelta m_{31}^2} \right| \) of both experiments. We perform numerical studies of PINGU and Daya Bay II sensitivities and show that the synergy effect may lead to a high significance determination of the mass ordering even in situations where the individual experiments obtain only poor sensitivity.

Keywords

Neutrino Physics Standard Model 

References

  1. [1]
    Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    KamLAND collaboration, K. Eguchi et al., First results from KamLAND: evidence for reactor anti-neutrino disappearance, Phys. Rev. Lett. 90 (2003) 021802 [hep-ex/0212021] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    KamLAND collaboration, T. Araki et al., Measurement of neutrino oscillation with KamLAND: evidence of spectral distortion, Phys. Rev. Lett. 94 (2005) 081801 [hep-ex/0406035] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    CHOOZ collaboration, M. Apollonio et al., Search for neutrino oscillations on a long baseline at the CHOOZ nuclear power station, Eur. Phys. J. C 27 (2003) 331 [hep-ex/0301017] [INSPIRE].ADSGoogle Scholar
  5. [5]
    DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    RENO collaboration, J. Ahn et al., Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    Double CHOOZ collaboration, Y. Abe et al., Reactor electron antineutrino disappearance in the Double CHOOZ experiment, Phys. Rev. D 86 (2012) 052008 [arXiv:1207.6632] [INSPIRE].ADSGoogle Scholar
  8. [8]
    SNO collaboration, Q. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    MINOS collaboration, P. Adamson et al., Measurement of Neutrino Oscillations with the MINOS Detectors in the NuMI Beam, Phys. Rev. Lett. 101 (2008) 131802 [arXiv:0806.2237] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    T2K collaboration, K. Abe et al., Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis Muon Neutrino Beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 12 (2012) 123 [arXiv:1209.3023] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE].ADSGoogle Scholar
  13. [13]
    V.D. Barger, K. Whisnant, S. Pakvasa and R. Phillips, Matter effects on three-neutrino oscillations, Phys. Rev. D 22 (1980) 2718 [INSPIRE].ADSGoogle Scholar
  14. [14]
    S. Mikheev and A.Y. Smirnov, Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos, Sov. J. Nucl. Phys. 42 (1985) 913 [INSPIRE].Google Scholar
  15. [15]
    M. Blennow and A.Y. Smirnov, Neutrino propagation in matter, Adv. High Energy Phys. 2013 (2013) 972485 [arXiv:1306.2903] [INSPIRE].Google Scholar
  16. [16]
    INO, India-Based Neutrino Observatory, http://www.ino.tifr.res.in/ino/.
  17. [17]
    M. Blennow and T. Schwetz, Identifying the neutrino mass ordering with INO and NOvA, JHEP 08 (2012) 058 [Erratum ibid. 1211 (2012) 098] [arXiv:1203.3388] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Ghosh, T. Thakore and S. Choubey, Determining the neutrino mass hierarchy with INO, T2K, NOvA and reactor experiments, JHEP 04 (2013) 009 [arXiv:1212.1305] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    D.J. Koskinen, IceCube-DeepCore-PINGU: Fundamental neutrino and dark matter physics at the South Pole, Mod. Phys. Lett. A 26 (2011) 2899 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    Km3Net, P. Coyle et al., ORCA: Oscillation Research with Cosmics in the Abyss, contribution to the European Strategy Preparatory Group Symposium, Krakow Poland (2012).Google Scholar
  21. [21]
    K. Abe et al., Letter of Intent: The Hyper-Kamiokande ExperimentDetector Design and Physics Potential, arXiv:1109.3262 [INSPIRE].
  22. [22]
    D. Autiero et al., Large underground, liquid based detectors for astro-particle physics in Europe: Scientific case and prospects, JCAP 11 (2007) 011 [arXiv:0705.0116] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. Petcov and M. Piai, The LMA MSW solution of the solar neutrino problem, inverted neutrino mass hierarchy and reactor neutrino experiments, Phys. Lett. B 533 (2002) 94 [hep-ph/0112074] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    Y. Wang, Daya Bay II: current status and future plan, talk at Daya Bay II meeting, IHEP, Beijing China (2013).Google Scholar
  25. [25]
    W. Wang, The Measurement of θ 13 at Daya Bay and Beyond, talk at the Beyond θ 13 workshop, University of Pittsburgh, Pittsburgh U.S.A. (2013), http://www.pitt.edu/neilc/BeyondTheta13/.
  26. [26]
    International Workshop onRENO-50toward Neutrino Mass Hierarchy, 13-14 June 2013, Seoul National University, Seoul Korea, http://home.kias.re.kr/MKG/h/reno50/.
  27. [27]
    H. Nunokawa, S.J. Parke and R. Zukanovich Funchal, Another possible way to determine the neutrino mass hierarchy, Phys. Rev. D 72 (2005) 013009 [hep-ph/0503283] [INSPIRE].ADSGoogle Scholar
  28. [28]
    H. Minakata, H. Nunokawa, S.J. Parke and R. Zukanovich Funchal, Determining neutrino mass hierarchy by precision measurements in electron and muon neutrino disappearance experiments, Phys. Rev. D 74 (2006) 053008 [hep-ph/0607284] [INSPIRE].ADSGoogle Scholar
  29. [29]
    A. de Gouvêa, J. Jenkins and B. Kayser, Neutrino mass hierarchy, vacuum oscillations and vanishing |U e3|, Phys. Rev. D 71 (2005) 113009 [hep-ph/0503079] [INSPIRE].ADSGoogle Scholar
  30. [30]
    X. Qian et al., Mass Hierarchy Resolution in Reactor Anti-neutrino Experiments: Parameter Degeneracies and Detector Energy Response, Phys. Rev. D 87 (2013), no. 3 033005 [arXiv:1208.1551] [INSPIRE].Google Scholar
  31. [31]
    S.-F. Ge, K. Hagiwara, N. Okamura and Y. Takaesu, Determination of mass hierarchy with medium baseline reactor neutrino experiments, JHEP 05 (2013) 131 [arXiv:1210.8141] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    Y.-F. Li, J. Cao, Y. Wang and L. Zhan, Unambiguous Determination of the Neutrino Mass Hierarchy Using Reactor Neutrinos, Phys. Rev. D 88 (2013) 013008 [arXiv:1303.6733] [INSPIRE].ADSGoogle Scholar
  33. [33]
    W. Winter, Neutrino mass hierarchy determination with IceCube-PINGU, Phys. Rev. D 88 (2013) 013013 [arXiv:1305.5539] [INSPIRE].ADSGoogle Scholar
  34. [34]
    IceCube collaboration, R. Abbasi et al., The Design and Performance of IceCube DeepCore, Astropart. Phys. 35 (2012) 615 [arXiv:1109.6096] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    D. Fargion, D. D’Armiento, P. Desiati and P. Paggi, Beaming neutrino and antineutrinos across the Earth to disentangle neutrino mixing parameters, Astrophys. J. 758 (2012) 3 [arXiv:1012.3245] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J. Tang and W. Winter, Requirements for a New Detector at the South Pole Receiving an Accelerator Neutrino Beam, JHEP 02 (2012) 028 [arXiv:1110.5908] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J. Brunner, Counting Electrons to Probe the Neutrino Mass Hierarchy, arXiv:1304.6230 [INSPIRE].
  38. [38]
    E.K. Akhmedov, S. Razzaque and A.Y. Smirnov, Mass hierarchy, 2-3 mixing and CP-phase with Huge Atmospheric Neutrino Detectors, JHEP 02 (2013) 082 [Erratum ibid. 1307 (2013) 026] [arXiv:1205.7071] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    O. Mena, I. Mocioiu and S. Razzaque, Neutrino mass hierarchy extraction using atmospheric neutrinos in ice, Phys. Rev. D 78 (2008) 093003 [arXiv:0803.3044] [INSPIRE].ADSGoogle Scholar
  40. [40]
    E. Fernandez-Martinez, G. Giordano, O. Mena and I. Mocioiu, Atmospheric neutrinos in ice and measurement of neutrino oscillation parameters, Phys. Rev. D 82 (2010) 093011 [arXiv:1008.4783] [INSPIRE].ADSGoogle Scholar
  41. [41]
    D. Indumathi and M. Murthy, A Question of hierarchy: Matter effects with atmospheric neutrinos and anti-neutrinos, Phys. Rev. D 71 (2005) 013001 [hep-ph/0407336] [INSPIRE].ADSGoogle Scholar
  42. [42]
    S. Petcov and T. Schwetz, Determining the neutrino mass hierarchy with atmospheric neutrinos, Nucl. Phys. B 740 (2006) 1 [hep-ph/0511277] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. Samanta, The mass hierarchy with atmospheric neutrinos at INO, Phys. Lett. B 673 (2009) 37 [hep-ph/0610196] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S.K. Agarwalla, T. Li, O. Mena and S. Palomares-Ruiz, Exploring the Earth matter effect with atmospheric neutrinos in ice, arXiv:1212.2238 [INSPIRE].
  45. [45]
    D. Franco et al., Mass hierarchy discrimination with atmospheric neutrinos in large volume ice/water Cherenkov detectors, JHEP 04 (2013) 008 [arXiv:1301.4332] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Ribordy and A.Y. Smirnov, Improving the neutrino mass hierarchy identification with inelasticity measurement in PINGU and ORCA, Phys. Rev. D 87 (2013) 113007 [arXiv:1303.0758] [INSPIRE].ADSGoogle Scholar
  47. [47]
    D. Cowen, Future Instruments: PINGU, talk at Snowmass Cosmic Frontier Workshop, 6-8 March 2013, SLAC, Menlo Park U.S.A.Google Scholar
  48. [48]
    A. Dziewonski and D. Anderson, Preliminary reference earth model, Phys. Earth Planet. Interiors 25 (1981) 297.ADSCrossRefGoogle Scholar
  49. [49]
    M. Honda, T. Kajita, K. Kasahara and S. Midorikawa, Calculation of the flux of atmospheric neutrinos, Phys. Rev. D 52 (1995) 4985 [hep-ph/9503439] [INSPIRE].ADSGoogle Scholar
  50. [50]
    C. Andreopoulos et al., The GENIE Neutrino Monte Carlo Generator, Nucl. Instrum. Meth. A 614 (2010) 87 [arXiv:0905.2517] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A. Ghosh and S. Choubey, Measuring the Mass Hierarchy with Muon and Hadron Events in Atmospheric Neutrino Experiments, arXiv:1306.1423 [INSPIRE].
  52. [52]
    M. Honda, T. Kajita, K. Kasahara and S. Midorikawa, A New calculation of the atmospheric neutrino flux in a 3-dimensional scheme, Phys. Rev. D 70 (2004) 043008 [astro-ph/0404457] [INSPIRE].ADSGoogle Scholar
  53. [53]
    E. Paschos and J. Yu, Neutrino interactions in oscillation experiments, Phys. Rev. D 65 (2002) 033002 [hep-ph/0107261] [INSPIRE].ADSGoogle Scholar
  54. [54]
    M. Gonzalez-Garcia and M. Maltoni, Atmospheric neutrino oscillations and new physics, Phys. Rev. D 70 (2004) 033010 [hep-ph/0404085] [INSPIRE].ADSGoogle Scholar
  55. [55]
    M. Blennow, P. Coloma, P. Huber and T. Schwetz, in preparation (2013).Google Scholar
  56. [56]
    X. Qian et al., Statistical Evaluation of Experimental Determinations of Neutrino Mass Hierarchy, Phys. Rev. D 86 (2012) 113011 [arXiv:1210.3651] [INSPIRE].ADSGoogle Scholar
  57. [57]
    E. Ciuffoli, J. Evslin and X. Zhang, Confidence in a Neutrino Mass Hierarchy Determination, arXiv:1305.5150 [INSPIRE].
  58. [58]
    S. Schonert, T. Lasserre and L. Oberauer, The HLMA project: Determination of high Δm 2 LMA mixing parameters and constraint on |U e3| with a new reactor neutrino experiment, Astropart. Phys. 18 (2003) 565 [hep-ex/0203013] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    S. Choubey, S. Petcov and M. Piai, Precision neutrino oscillation physics with an intermediate baseline reactor neutrino experiment, Phys. Rev. D 68 (2003) 113006 [hep-ph/0306017] [INSPIRE].ADSGoogle Scholar
  60. [60]
    J. Learned, S.T. Dye, S. Pakvasa and R.C. Svoboda, Determination of neutrino mass hierarchy and theta(13) with a remote detector of reactor antineutrinos, Phys. Rev. D 78 (2008) 071302 [hep-ex/0612022] [INSPIRE].ADSGoogle Scholar
  61. [61]
    M. Batygov et al., Prospects of neutrino oscillation measurements in the detection of reactor antineutrinos with a medium-baseline experiment, arXiv:0810.2580 [INSPIRE].
  62. [62]
    L. Zhan, Y. Wang, J. Cao and L. Wen, Determination of the Neutrino Mass Hierarchy at an Intermediate Baseline, Phys. Rev. D 78 (2008) 111103 [arXiv:0807.3203] [INSPIRE].ADSGoogle Scholar
  63. [63]
    L. Zhan, Y. Wang, J. Cao and L. Wen, Experimental Requirements to Determine the Neutrino Mass Hierarchy Using Reactor Neutrinos, Phys. Rev. D 79 (2009) 073007 [arXiv:0901.2976] [INSPIRE].ADSGoogle Scholar
  64. [64]
    P. Ghoshal and S. Petcov, Neutrino mass hierarchy determination using reactor antineutrinos, JHEP 03 (2011) 058 [arXiv:1011.1646] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    P. Ghoshal and S. Petcov, Addendum: Neutrino mass hierarchy determination using reactor antineutrinos, JHEP 09 (2012) 115 [arXiv:1208.6473] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    E. Ciuffoli, J. Evslin and X. Zhang, Mass hierarchy determination using neutrinos from multiple reactors, JHEP 12 (2012) 004 [arXiv:1209.2227] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    E. Ciuffoli et al., Medium baseline reactor neutrino experiments with 2 identical detectors, arXiv:1211.6818 [INSPIRE].
  68. [68]
    E. Ciuffoli, J. Evslin and X. Zhang, Optimizing medium baseline reactor neutrino experiments, arXiv:1302.0624 [INSPIRE].
  69. [69]
    T2K collaboration, K. Abe et al., First Muon-Neutrino Disappearance Study with an Off-Axis Beam, Phys. Rev. D 85 (2012) 031103 [arXiv:1201.1386] [INSPIRE].ADSGoogle Scholar
  70. [70]
    P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    W. Wang, Resolving Neutrino Mass Hierarchy using Nuclear Reactor(s), talk at Invisibles13, Lumley Castle U.K. (2013).Google Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Department of Theoretical Physics, School of Engineering Sciences, KTH Royal Institute of TechnologyAlbaNova University CenterStockholmSweden
  2. 2.Max-Planck-Institut für KernphysikHeidelbergGermany

Personalised recommendations