Journal of High Energy Physics

, 2013:56 | Cite as

Scattering by a long-range potential

  • Shahar Hod


The phenomenon of wave tails has attracted much attention over the years from both physicists and mathematicians. However, our understanding of this fascinating phenomenon is not complete yet. In particular, most former studies of the tail phenomenon have focused on scattering potentials which approach zero asymptotically (x → ∞) faster than x −2. It is well-known that for these (rapidly decaying) scattering potentials the late-time tails are determined by the first Born approximation and are therefore linear in the amplitudes of the scattering potentials (there are, however, some exceptional cases in which the first Born approximation vanishes and one has to consider higher orders of the scattering problem). In the present study we analyze in detail the late-time dynamics of the Klein-Gordon wave equation with a (slowly decaying) Coulomb-like scattering potential: V (x → ∞) = α/x. In particular, we write down an explicit solution (that is, an exact analytic solution which is not based on the first Born approximation) for this scattering problem. It is found that the asymptotic (t → ∞) late-time behavior of the fields depends non-linearly on the amplitude α of the scattering potential. This non-linear dependence on the amplitude of the scattering potential reflects the fact that the late-time dynamics associated with this slowly decaying scattering potential is dominated by multiple scattering from asymptotically far regions.


Integrable Equations in Physics Classical Theories of Gravity Black Holes 


  1. [1]
    R.H. Price, Nonspherical perturbations of relativistic gravitational collapse. 1. Scalar and gravitational perturbations, Phys. Rev. D 5 (1972) 2419 [INSPIRE].ADSGoogle Scholar
  2. [2]
    J. Bičák, Gravitational collapse with charge and small asymmetries, I: scalar perturbations, Gen. Rel. Grav. 3 (1972) 331.ADSCrossRefGoogle Scholar
  3. [3]
    Y. Sun and R. Price, Excitation of quasinormal ringing of a Schwarzschild black hole, Phys. Rev. D 38 (1988) 1040 [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    C. Gundlach, R.H. Price and J. Pullin, Late time behavior of stellar collapse and explosions: 1. Linearized perturbations, Phys. Rev. D 49 (1994) 883 [gr-qc/9307009] [INSPIRE].ADSGoogle Scholar
  5. [5]
    S. Hod and T. Piran, Late time evolution of charged gravitational collapse and decay of charged scalar hair. 1, Phys. Rev. D 58 (1998) 024017 [gr-qc/9712041] [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    S. Hod and T. Piran, Late time evolution of charged gravitational collapse and decay of charged scalar hair. 2, Phys. Rev. D 58 (1998) 024018 [gr-qc/9801001] [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    S. Hod and T. Piran, Late time tails in gravitational collapse of a selfinteracting (massive) scalar field and decay of a selfinteracting scalar hair, Phys. Rev. D 58 (1998) 044018 [gr-qc/9801059] [INSPIRE].ADSGoogle Scholar
  8. [8]
    S. Hod and T. Piran, Late time evolution of charged gravitational collapse and decay of charged scalar hair. 3. Nonlinear analysis, Phys. Rev. D 58 (1998) 024019 [gr-qc/9801060] [INSPIRE].MathSciNetADSGoogle Scholar
  9. [9]
    S. Hod, Late time evolution of realistic rotating collapse and the no hair theorem, Phys. Rev. D 58 (1998) 104022 [gr-qc/9811032] [INSPIRE].MathSciNetADSGoogle Scholar
  10. [10]
    P.R. Brady, C.M. Chambers, W.G. Laarakkers and E. Poisson, Radiative falloff in Schwarzschild-de Sitter space-time, Phys. Rev. D 60 (1999) 064003 [gr-qc/9902010] [INSPIRE].ADSGoogle Scholar
  11. [11]
    R.-G. Cai and A. Wang, Late time evolution of the Yang-Mills field in the spherically symmetric gravitational collapse, Gen. Rel. Grav. 31 (1999) 1367 [gr-qc/9910067] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  12. [12]
    S. Hod, High order contamination in the tail of gravitational collapse, Phys. Rev. D 60 (1999) 104053 [gr-qc/9907044] [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    S. Hod, Mode coupling in rotating gravitational collapse of a scalar field, Phys. Rev. D 61 (2000) 024033 [gr-qc/9902072] [INSPIRE].MathSciNetADSGoogle Scholar
  14. [14]
    S. Hod, Mode coupling in realistic rotating gravitational collapse, gr-qc/9902073 [INSPIRE].
  15. [15]
    L. Barack, Late time decay of scalar, electromagnetic and gravitational perturbations outside rotating black holes, Phys. Rev. D 61 (2000) 024026 [gr-qc/9908005] [INSPIRE].MathSciNetADSGoogle Scholar
  16. [16]
    E. Malec, Diffusion of the electromagnetic energy due to the backscattering off Schwarzschild geometry, Phys. Rev. D 62 (2000) 084034 [gr-qc/0005130] [INSPIRE].ADSGoogle Scholar
  17. [17]
    S. Hod, The radiative tail of realistic gravitational collapse, Phys. Rev. Lett. 84 (2000) 10 [gr-qc/9907096] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    W.G. Laarakkers and E. Poisson, Radiative falloff in Einstein-Straus space-time, Phys. Rev. D 64 (2001) 084008 [gr-qc/0105016] [INSPIRE].ADSGoogle Scholar
  19. [19]
    S. Hod, How pure is the tail of gravitational collapse?, Class. Quant. Grav. 26 (2009) 028001 [arXiv:0902.0237] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    J.-l. Jing, Late-time behavior of massive Dirac fields in a Schwarzschild background, Phys. Rev. D 70 (2004) 065004 [gr-qc/0405122] [INSPIRE].ADSGoogle Scholar
  21. [21]
    X. He and J. Jing, Late-time evolution of charged massive Dirac fields in the Kerr-Newman background, Nucl. Phys. B 755 (2006) 313 [gr-qc/0611003] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    B. Wang, C. Molina and E. Abdalla, Evolving of a massless scalar field in Reissner-Nordstrom Anti-de Sitter space-times, Phys. Rev. D 63 (2001) 084001 [hep-th/0005143] [INSPIRE].ADSGoogle Scholar
  23. [23]
    R. Konoplya and A. Zhidenko, Quasinormal modes of black holes: from astrophysics to string theory, Rev. Mod. Phys. 83 (2011) 793 [arXiv:1102.4014] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J. Gleiser, R.H. Price and J. Pullin, Late time tails in the Kerr spacetime, Class. Quant. Grav. 25 (2008) 072001 [arXiv:0710.4183] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    M. Tiglio, L.E. Kidder and S.A. Teukolsky, High accuracy simulations of Kerr tails: Coordinate dependence and higher multipoles, Class. Quant. Grav. 25 (2008) 105022 [arXiv:0712.2472] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    R. Moderski and M. Rogatko, Late time evolution of a selfinteracting scalar field in the space-time of dilaton black hole, Phys. Rev. D 64 (2001) 044024 [gr-qc/0105056] [INSPIRE].ADSGoogle Scholar
  27. [27]
    P. Bizon, T. Chmaj and A. Rostworowski, Anomalously small wave tails in higher dimensions, Phys. Rev. D 76 (2007) 124035 [arXiv:0708.1769] [INSPIRE].MathSciNetADSGoogle Scholar
  28. [28]
    R. Moderski and M. Rogatko, Decay of Dirac massive hair in the background of spherical black hole, Phys. Rev. D 77 (2008) 124007 [arXiv:0805.0665] [INSPIRE].ADSGoogle Scholar
  29. [29]
    B. Wang, C.-Y. Lin and C. Molina, Quasinormal behavior of massless scalar field perturbation in Reissner-Nordstrom Anti-de Sitter spacetimes, Phys. Rev. D 70 (2004) 064025 [hep-th/0407024] [INSPIRE].MathSciNetADSGoogle Scholar
  30. [30]
    E. Abdalla, B. Cuadros-Melgar, A. Pavan and C. Molina, Stability and thermodynamics of brane black holes, Nucl. Phys. B 752 (2006) 40 [gr-qc/0604033] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    X. He, B. Wang, S.-F. Wu and C.-Y. Lin, Quasinormal modes of black holes absorbing dark energy, Phys. Lett. B 673 (2009) 156 [arXiv:0901.0034] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    K.S. Thorne, Nonspherical gravitational collapseA short review, in Magic without magic: John Archibald Wheeler, J. Klauder ed, W.H. Freeman, San Francisco U.S.A. (1972).Google Scholar
  33. [33]
    E. Ching, P. Leung, W. Suen and K. Young, Late time tail of wave propagation on curved space-time, Phys. Rev. Lett. 74 (1995) 2414 [gr-qc/9410044] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    E. Ching, P. Leung, W. Suen and K. Young, Wave propagation in gravitational systems: Late time behavior, Phys. Rev. D 52 (1995) 2118 [gr-qc/9507035] [INSPIRE].ADSGoogle Scholar
  35. [35]
    S. Hod, Wave tails in non-trivial backgrounds, Class. Quant. Grav. 18 (2001) 1311 [gr-qc/0008001] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  36. [36]
    S. Hod, Wave tails in time dependent backgrounds, Phys. Rev. D 66 (2002) 024001 [gr-qc/0201017] [INSPIRE].MathSciNetADSGoogle Scholar
  37. [37]
    P.M. Morse and H. Feshbach, Methods of theoretical physics, McGraw-Hill, U.S.A. (1953).MATHGoogle Scholar
  38. [38]
    E.W. Leaver, Spectral decomposition of the perturbation response of the Schwarzschild geometry, Phys. Rev. D 34 (1986) 384 [INSPIRE].MathSciNetADSGoogle Scholar
  39. [39]
    N. Andersson, Evolving test fields in a black hole geometry, Phys. Rev. D 55 (1997) 468 [gr-qc/9607064] [INSPIRE].ADSGoogle Scholar
  40. [40]
    M. Abramowitz and I.A. Stegun, Handbook of mathematical functions, Dover Publications, New York U.S.A. (1970).Google Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.The Ruppin Academic CenterEmeq HeferIsrael
  2. 2.The Hadassah InstituteJerusalemIsrael

Personalised recommendations