Advertisement

Journal of High Energy Physics

, 2013:48 | Cite as

Holographic superconductors with hyperscaling violation

  • ZhongYing Fan
Article

Abstract

We investigate holographic superconductors in asympototically geometries with hyperscaling violation. The mass of the scalar field decouples from the UV dimension of the dual scalar operator and can be chosen as negative as we want, without disturbing the Breitenlohner-Freedman bound. We first numerically find that the scalar condenses below a critical temperature and a gap opens in the real part of the conductivity, indicating the onset of superconductivity. We further analytically explore the effects of the hyperscaling violation on the superconducting transition temperature. We find that the critical temperature increases with the increasing of hyperscaling violation.

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence Holography and condensed matter physics (AdS/CMT) 

References

  1. [1]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].ADSGoogle Scholar
  4. [4]
    S. Kachru, X. Liu and M. Mulligan, Gravity Duals of Lifshitz-like Fixed Points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    M. Dehghani, R. Mann and R. Pourhasan, Charged Lifshitz Black Holes, Phys. Rev. D 84 (2011) 046002 [arXiv:1102.0578] [INSPIRE].ADSGoogle Scholar
  6. [6]
    M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].
  7. [7]
    J. Tarrio and S. Vandoren, Black holes and black branes in Lifshitz spacetimes, JHEP 09 (2011) 017 [arXiv:1105.6335] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    N. Iizuka, N. Kundu, P. Narayan and S.P. Trivedi, Holographic Fermi and Non-Fermi Liquids with Transitions in Dilaton Gravity, JHEP 01 (2012) 094 [arXiv:1105.1162] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    C. Charmousis, B. Gouteraux, B. Kim, E. Kiritsis and R. Meyer, Effective Holographic Theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    B. Gouteraux and E. Kiritsis, Generalized Holographic Quantum Criticality at Finite Density, JHEP 12 (2011) 036 [arXiv:1107.2116] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    X. Dong, S. Harrison, S. Kachru, G. Torroba and H. Wang, Aspects of holography for theories with hyperscaling violation, JHEP 06 (2012) 041 [arXiv:1201.1905] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Alishahiha, E. O Colgain and H. Yavartanoo, Charged Black Branes with Hyperscaling Violating Factor, JHEP 11 (2012) 137 [arXiv:1209.3946] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    Y. Bu, Holographic superconductors with z = 2 Lifshitz scaling, Phys. Rev. D 86 (2012) 046007 [arXiv:1211.0037] [INSPIRE].ADSGoogle Scholar
  15. [15]
    A. Salvio, Holographic Superfluids and Superconductors in Dilaton-Gravity, JHEP 09 (2012) 134 [arXiv:1207.3800] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. Salvio, Transitions in Dilaton Holography with Global or Local Symmetries, JHEP 03 (2013) 136 [arXiv:1302.4898] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    D. Momeni, R. Myrzakulov, L. Sebastiani and M. Setare, Analytical holographic superconductors in AdS N topological Lifshitz black holes, arXiv:1210.7965 [INSPIRE].
  18. [18]
    Z. Fan, Holographic fermions in asymptotically scaling geometries with hyperscaling violation, Phys. Rev. D 88 (2013) 026018 [arXiv:1303.6053] [INSPIRE].ADSGoogle Scholar
  19. [19]
    G. Siopsis and J. Therrien, Analytic Calculation of Properties of Holographic Superconductors, JHEP 05 (2010) 013 [arXiv:1003.4275] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    C.P. Herzog, An Analytic Holographic Superconductor, Phys. Rev. D 81 (2010) 126009 [arXiv:1003.3278] [INSPIRE].ADSGoogle Scholar
  21. [21]
    Q. Pan, J. Jing, B. Wang and S. Chen, Analytical study on holographic superconductors with backreactions, JHEP 06 (2012) 087 [arXiv:1205.3543] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S.A. Hartnoll and R. Pourhasan, Entropy balance in holographic superconductors, JHEP 07 (2012) 114 [arXiv:1205.1536] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Department of PhysicsBeijing Normal UniversityBeijingChina

Personalised recommendations