Advertisement

Journal of High Energy Physics

, 2013:19 | Cite as

Mass spectrum of heavy quarkonium hybrids

  • Wei Chen
  • R. T. Kleiv
  • T. G. Steele
  • B. Bulthuis
  • D. Harnett
  • J. Ho
  • T. Richards
  • Shi-Lin Zhu
Article

Abstract

We have extended the calculation of the correlation functions of heavy quarkonium hybrid operators with various J PC quantum numbers to include QCD condensates up to dimension six. In contrast to previous analyses which were unable to optimize the QCD sum-rules for certain J PC, recent work has shown that inclusion of dimension six condensates stabilizes the hybrid sum-rules and permits reliable mass predictions. In this work we have investigated the effects of the dimension six condensates on the remaining channels. After performing the QCD sum-rule analysis, we update the mass spectra of charmonium and bottomonium hybrids with exotic and non-exotic quantum numbers. We identify that the negative-parity states with J PC = (0, 1, 2)−+ , 1−− form the lightest hybrid supermultiplet while the positive-parity states with J PC = (0, 1)+− , (0, 1, 2)++ belong to a heavier hybrid supermultiplet, confirming the supermultiplet structure found in other approaches. The hybrid with J PC = 0−− has a much higher mass which may suggest a different excitation of the gluonic field compared to other channels. In agreement with previous results, we find that the J PC = 1++ charmonium hybrid is substantially heavier than the X(3872), which seems to preclude a pure charmonium hybrid interpretation for this state.

Keywords

Sum Rules QCD 

References

  1. [1]
    S. Godfrey and N. Isgur, Mesons in a relativized quark model with chromodynamics, Phys. Rev. D 32 (1985) 189 [INSPIRE].ADSGoogle Scholar
  2. [2]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  3. [3]
    E. Klempt and A. Zaitsev, Glueballs, hybrids, multiquarks: experimental facts versus QCD inspired concepts, Phys. Rept. 454 (2007) 1 [arXiv:0708.4016] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    T. Barnes, F. Close, F. de Viron and J. Weyers, \( Q\overline{Q}G \) hermaphrodite mesons in the MIT bag model, Nucl. Phys. B 224 (1983) 241 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M.S. Chanowitz and S.R. Sharpe, Hybrids: mixed states of quarks and gluons, Nucl. Phys. B 222 (1983) 211 [Erratum ibid. B 228 (1983) 588] [INSPIRE].
  6. [6]
    Hadron Spectrum collaboration, L. Liu et al., Excited and exotic charmonium spectroscopy from lattice QCD, JHEP 07 (2012) 126 [arXiv:1204.5425] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J.J. Dudek, The lightest hybrid meson supermultiplet in QCD, Phys. Rev. D 84 (2011) 074023 [arXiv:1106.5515] [INSPIRE].ADSGoogle Scholar
  8. [8]
    N. Isgur, R. Kokoski and J.E. Paton, Gluonic excitations of mesons: why they are missing and where to find them, Phys. Rev. Lett. 54 (1985) 869 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    F.E. Close and P.R. Page, The photoproduction of hybrid mesons from CEBAF to HERA, Phys. Rev. D 52 (1995) 1706 [hep-ph/9412301] [INSPIRE].ADSGoogle Scholar
  10. [10]
    T. Barnes, F.E. Close and E.S. Swanson, Hybrid and conventional mesons in the flux tube model: numerical studies and their phenomenological implications, Phys. Rev. D 52 (1995) 5242 [hep-ph/9501405] [INSPIRE].ADSGoogle Scholar
  11. [11]
    P.R. Page, E.S. Swanson and A.P. Szczepaniak, Hybrid meson decay phenomenology, Phys. Rev. D 59 (1999) 034016 [hep-ph/9808346] [INSPIRE].ADSGoogle Scholar
  12. [12]
    F.E. Close and P.R. Page, The production and decay of hybrid mesons by flux tube breaking, Nucl. Phys. B 443 (1995) 233 [hep-ph/9411301] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    C. McNeile et al., Exotic meson spectroscopy from the clover action at β = 5.85 and 6.15, Nucl. Phys. Proc. Suppl. 73 (1999) 264 [hep-lat/9809087] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    TXL collaboration, P. Lacock and K. Schilling, Hybrid and orbitally excited mesons in full QCD, Nucl. Phys. Proc. Suppl. 73 (1999) 261 [hep-lat/9809022] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    C. Bernard et al., Lattice calculation of 1−+ hybrid mesons with improved Kogut-Susskind fermions, Phys. Rev. D 68 (2003) 074505 [hep-lat/0301024] [INSPIRE].ADSGoogle Scholar
  16. [16]
    J. Hedditch et al., 1−+ exotic meson at light quark masses, Phys. Rev. D 72 (2005) 114507 [hep-lat/0509106] [INSPIRE].ADSGoogle Scholar
  17. [17]
    J. Govaerts, F. de Viron, D. Gusbin and J. Weyers, Exotic mesons from QCD sum rules, Phys. Lett. B 128 (1983) 262 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J. Govaerts, F. de Viron, D. Gusbin and J. Weyers, QCD sum rules and hybrid mesons, Nucl. Phys. B 248 (1984) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J. Latorre, S. Narison, P. Pascual and R. Tarrach, Hermaphrodite mesons and QCD sum rules, Phys. Lett. B 147 (1984) 169 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J.I. Latorre, P. Pascual and S. Narison, Spectra and hadronic couplings of light hermaphrodite mesons, Z. Phys. C 34 (1987) 347 [INSPIRE].ADSGoogle Scholar
  21. [21]
    I. Balitsky, D. Diakonov and A. Yung, Exotic mesons with J PC = 1−+ , strange and nonstrange, Z. Phys. C 33 (1986) 265 [INSPIRE].ADSGoogle Scholar
  22. [22]
    H. Jin, J. Korner and T.G. Steele, Improved determination of the mass of the 1−+ light hybrid meson from QCD sum rules, Phys. Rev. D 67 (2003) 014025 [hep-ph/0211304] [INSPIRE].ADSGoogle Scholar
  23. [23]
    K.G. Chetyrkin and S. Narison, Light hybrid mesons in QCD, Phys. Lett. B 485 (2000) 145 [hep-ph/0003151] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S.-L. Zhu, Some decay modes of the 1−+ hybrid meson in QCD sum rules revisited, Phys. Rev. D 60 (1999) 097502 [hep-ph/9903537] [INSPIRE].ADSGoogle Scholar
  25. [25]
    E852 collaboration, D. Thompson et al., Evidence for exotic meson production in the reaction π pηπ p at 18 GeV/c, Phys. Rev. Lett. 79 (1997) 1630 [hep-ex/9705011] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    Crystal Barrel collaboration, A. Abele et al., Exotic ηπ state in \( \overline{p}d \) annihilation at rest into π π 0 ηp spectator, Phys. Lett. B 423 (1998) 175 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    Crystal Barrel collaboration, A. Abele et al., Evidence for a πη-P-wave in \( \overline{p}p \) -annihilations at rest into π 0 π 0 η, Phys. Lett. B 446 (1999) 349 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    E862 collaboration, G. Adams et al., Confirmation of a 1−+ exotic meson in the ηπ 0 system, Phys. Lett. B 657 (2007) 27 [hep-ex/0612062] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    D. Horn and J. Mandula, A model of mesons with constituent gluons, Phys. Rev. D 17 (1978) 898 [INSPIRE].ADSGoogle Scholar
  30. [30]
    J. Govaerts, L.J. Reinders, H.R. Rubinstein and J. Weyers, Hybrid quarkonia from QCD sum rules, Nucl. Phys. B 258 (1985) 215 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J. Govaerts, L.J. Reinders and J. Weyers, Radial excitations and exotic mesons via QCD sum rules, Nucl. Phys. B 262 (1985) 575 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J. Govaerts, L.J. Reinders, P. Francken, X. Gonze and J. Weyers, Coupled QCD sum rules for hybrid mesons, Nucl. Phys. B 284 (1987) 674 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    S.-L. Zhu, Hybrid quarkonium masses up to the order of 1/m Q, Phys. Rev. D 60 (1999) 031501 [hep-ph/9812469] [INSPIRE].ADSGoogle Scholar
  34. [34]
    C.-F. Qiao, L. Tang, G. Hao and X.-Q. Li, Determining 1−− heavy hybrid masses via QCD sum rules, J. Phys. G 39 (2012) 015005 [arXiv:1012.2614] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    D. Harnett, R.T. Kleiv, T.G. Steele and H.-y. Jin, Axial vector J PC = 1++ charmonium and bottomonium hybrid mass predictions with QCD sum-rules, J. Phys. G 39 (2012) 125003 [arXiv:1206.6776] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    R. Berg, D. Harnett, R.T. Kleiv and T.G. Steele, Mass predictions for pseudoscalar J PC = 0−+ charmonium and bottomonium hybrids in QCD sum-rules, Phys. Rev. D 86 (2012) 034002 [arXiv:1204.0049] [INSPIRE].ADSGoogle Scholar
  37. [37]
    S. Perantonis and C. Michael, Static potentials and hybrid mesons from pure SU(3) lattice gauge theory, Nucl. Phys. B 347 (1990) 854 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    K.J. Juge, J. Kuti and C.J. Morningstar, Ab initio study of hybrid \( \overline{b}gb \) mesons, Phys. Rev. Lett. 82 (1999) 4400 [hep-ph/9902336] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    Y. Liu and X.-Q. Luo, Estimate of the charmed 0−− hybrid meson spectrum from quenched lattice QCD, Phys. Rev. D 73 (2006) 054510 [hep-lat/0511015] [INSPIRE].ADSGoogle Scholar
  40. [40]
    X.-Q. Luo and Y. Liu, Gluonic excitation of non-exotic hybrid charmonium from lattice QCD, Phys. Rev. D 74 (2006) 034502 [Erratum ibid. D 74 (2006) 039902] [hep-lat/0512044] [INSPIRE].
  41. [41]
    L. Liu, S.M. Ryan, M. Peardon, G. Moir and P. Vilaseca, Charmonium spectroscopy from an anisotropic lattice study, PoS(Lattice 2011)140 [arXiv:1112.1358] [INSPIRE].
  42. [42]
    P. Guo, A.P. Szczepaniak, G. Galata, A. Vassallo and E. Santopinto, Heavy quarkonium hybrids from Coulomb gauge QCD, Phys. Rev. D 78 (2008) 056003 [arXiv:0807.2721] [INSPIRE].ADSGoogle Scholar
  43. [43]
    N. Brambilla et al., Heavy quarkonium: progress, puzzles and opportunities, Eur. Phys. J. C 71 (2011) 1534 [arXiv:1010.5827] [INSPIRE].ADSGoogle Scholar
  44. [44]
    M. Nielsen, F.S. Navarra and S.H. Lee, New charmonium states in QCD sum rules: a concise review, Phys. Rept. 497 (2010) 41 [arXiv:0911.1958] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    E.S. Swanson, The new heavy mesons: a status report, Phys. Rept. 429 (2006) 243 [hep-ph/0601110] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    S.-L. Zhu, New hadron states, Int. J. Mod. Phys. E 17 (2008) 283 [hep-ph/0703225] [INSPIRE].CrossRefGoogle Scholar
  47. [47]
    J.L. Rosner, Heavy quark spectroscopytheory overview, J. Phys. Conf. Ser. 69 (2007) 012002 [hep-ph/0612332] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    S.-L. Zhu, The possible interpretations of Y (4260), Phys. Lett. B 625 (2005) 212 [hep-ph/0507025] [INSPIRE].ADSGoogle Scholar
  49. [49]
    F.E. Close and P.R. Page, Gluonic charmonium resonances at BaBar and Belle?, Phys. Lett. B 628 (2005) 215 [hep-ph/0507199] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    F.E. Close and S. Godfrey, Charmonium hybrid production in exclusive B meson decays, Phys. Lett. B 574 (2003) 210 [hep-ph/0305285] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, QCD and resonance physics. Theoretical foundations, Nucl. Phys. B 147 (1979) 385 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    L.J. Reinders, H. Rubinstein and S. Yazaki, Hadron properties from QCD sum rules, Phys. Rept. 127 (1985) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    P. Colangelo and A. Khodjamirian, QCD sum rules, a modern perspective, in At the frontier of particle physics / Handbook of QCD, M. Shifman ed., World Scientific, Singapore (2001) [hep-ph/0010175] [INSPIRE].Google Scholar
  54. [54]
    R. Mertig and R. Scharf, TARCER: a Mathematica program for the reduction of two loop propagator integrals, Comput. Phys. Commun. 111 (1998) 265 [hep-ph/9801383] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  55. [55]
    O. Tarasov, Connection between Feynman integrals having different values of the space-time dimension, Phys. Rev. D 54 (1996) 6479 [hep-th/9606018] [INSPIRE].MathSciNetADSGoogle Scholar
  56. [56]
    O. Tarasov, Generalized recurrence relations for two loop propagator integrals with arbitrary masses, Nucl. Phys. B 502 (1997) 455 [hep-ph/9703319] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    E. Boos and A.I. Davydychev, A method of evaluating massive Feynman integrals, Theor. Math. Phys. 89 (1991) 1052 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  58. [58]
    A.I. Davydychev, General results for massive N point Feynman diagrams with different masses, J. Math. Phys. 33 (1992) 358 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  59. [59]
    D.J. Broadhurst, J. Fleischer and O. Tarasov, Two loop two point functions with masses: asymptotic expansions and Taylor series, in any dimension, Z. Phys. C 60 (1993) 287 [hep-ph/9304303] [INSPIRE].ADSGoogle Scholar
  60. [60]
    W. Chen and S.-L. Zhu, The possible J PC = 0−− charmonium-like state, Phys. Rev. D 81 (2010) 105018 [arXiv:1003.3721] [INSPIRE].ADSGoogle Scholar
  61. [61]
    W. Chen and S.-L. Zhu, The vector and axial-vector charmonium-like states, Phys. Rev. D 83 (2011) 034010 [arXiv:1010.3397] [INSPIRE].ADSGoogle Scholar
  62. [62]
    W. Chen, Z.-X. Cai and S.-L. Zhu, The tensor charmonium and bottomonium states with J PC = 2−−, arXiv:1107.4949 [INSPIRE].
  63. [63]
    M.-L. Du, W. Chen, X.-L. Chen and S.-L. Zhu, Exotic \( QQ\overline{qq} \) , \( QQ\overline{qs} \) and \( QQ\overline{ss} \) states, Phys. Rev. D 87 (2013) 014003 [arXiv:1209.5134] [INSPIRE].ADSGoogle Scholar
  64. [64]
    K.G. Chetyrkin et al., Charm and bottom quark masses: an update, Phys. Rev. D 80 (2009) 074010 [arXiv:0907.2110] [INSPIRE].ADSGoogle Scholar
  65. [65]
    S. Narison, Gluon condensates and \( {{\overline{m}}_b}\left( {{{\overline{m}}_b}} \right) \) from QCD-exponential moments at higher orders, Phys. Lett. B 707 (2012) 259 [arXiv:1105.5070] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    S. Narison, Gluon condensates and c, b quark masses from quarkonia ratios of moments, Phys. Lett. B 693 (2010) 559 [Erratum ibid. 705 (2011) 544] [arXiv:1004.5333] [INSPIRE].
  67. [67]
    J.H. Kuhn, M. Steinhauser and C. Sturm, Heavy quark masses from sum rules in four-loop approximation, Nucl. Phys. B 778 (2007) 192 [hep-ph/0702103] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    S. Narison and R. Tarrach, Higher dimensional renormalization group invariant vacuum condensates in quantum chromodynamics, Phys. Lett. B 125 (1983) 217 [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    S. Narison, QCD as a theory of hadrons from partons to confinement, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 17 (2002) 1 [hep-ph/0205006] [INSPIRE].Google Scholar
  70. [70]
    L.S. Kisslinger, D. Parno and S. Riordan, Hybrid charmonium and the ρπ puzzle, Adv. High Energy Phys. 2008 (2008) 982341 [arXiv:0805.1943] [INSPIRE].Google Scholar
  71. [71]
    Belle collaboration, K. Abe et al., Experimental constraints on the possible J PC quantum numbers of the X(3872), hep-ex/0505038 [INSPIRE].
  72. [72]
    CDF collaboration, A. Abulencia et al., Analysis of the quantum numbers J PC of the X(3872), Phys. Rev. Lett. 98 (2007) 132002 [hep-ex/0612053] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    BaBar collaboration, P. del Amo Sanchez et al., Evidence for the decay X(3872) → J/ψω, Phys. Rev. D 82 (2010) 011101 [arXiv:1005.5190] [INSPIRE].ADSGoogle Scholar
  74. [74]
    LHCb collaboration, Determination of the X(3872) meson quantum numbers, Phys. Rev. Lett. 110 (2013) 222001 [arXiv:1302.6269] [INSPIRE].CrossRefGoogle Scholar
  75. [75]
    A. Erdélyi ed., Higher transcendental functions, Bateman Manuscript Project, vol. 1., McGraw-Hill, New York U.S.A. (1953).Google Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Wei Chen
    • 1
  • R. T. Kleiv
    • 1
  • T. G. Steele
    • 1
  • B. Bulthuis
    • 2
  • D. Harnett
    • 2
  • J. Ho
    • 2
  • T. Richards
    • 2
  • Shi-Lin Zhu
    • 3
  1. 1.Department of Physics and Engineering PhysicsUniversity of SaskatchewanSaskatoonCanada
  2. 2.Department of PhysicsUniversity of the Fraser ValleyAbbotsfordCanada
  3. 3.Department of Physics and State Key Laboratory of Nuclear Physics and TechnologyPeking UniversityBeijingChina

Personalised recommendations