Advertisement

Journal of High Energy Physics

, 2013:17 | Cite as

General black holes, untwisted

  • Mirjam Cvetič
  • Monica Guica
  • Zain H. Saleem
Article

Abstract

We use solution-generating techniques to construct interpolating geometries between general asymptotically flat, charged, rotating, non-extremal black holes in four and five dimensions and their subtracted geometries. In the four-dimensional case, this is achieved by the use of Harrison transformations, whereas in the five-dimensional case we use STU transformations. We also give the interpretation of these solution-generating transformations in terms of string (pseudo)-dualities, showing that they correspond to combinations of T-dualities and Melvin twists. Upon uplift to one dimension higher, these dualities allow us to “untwist” general black holes to AdS 3 times a sphere.

Keywords

Gauge-gravity correspondence Black Holes in String Theory 

References

  1. [1]
    M. Cvetič and D. Youm, Entropy of nonextreme charged rotating black holes in string theory, Phys. Rev. D 54 (1996) 2612 [hep-th/9603147] [INSPIRE].ADSGoogle Scholar
  2. [2]
    M. Cvetič and D. Youm, General rotating five-dimensional black holes of toroidally compactified heterotic string, Nucl. Phys. B 476 (1996) 118 [hep-th/9603100] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    F. Larsen, A String model of black hole microstates, Phys. Rev. D 56 (1997) 1005 [hep-th/9702153] [INSPIRE].ADSGoogle Scholar
  4. [4]
    M. Cvetič and F. Larsen, General rotating black holes in string theory: Grey body factors and event horizons, Phys. Rev. D 56 (1997) 4994 [hep-th/9705192] [INSPIRE].ADSGoogle Scholar
  5. [5]
    M. Cvetič and F. Larsen, Grey body factors for rotating black holes in four-dimensions, Nucl. Phys. B 506 (1997) 107 [hep-th/9706071] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Castro, A. Maloney and A. Strominger, Hidden Conformal Symmetry of the Kerr Black Hole, Phys. Rev. D 82 (2010) 024008 [arXiv:1004.0996] [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    M. Cvetič and F. Larsen, Conformal Symmetry for General Black Holes, JHEP 02 (2012) 122 [arXiv:1106.3341] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Cvetič and F. Larsen, Conformal Symmetry for Black Holes in Four Dimensions, JHEP 09 (2012) 076 [arXiv:1112.4846] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M. Cvetič and G. Gibbons, Conformal Symmetry of a Black Hole as a Scaling Limit: A Black Hole in an Asymptotically Conical Box, JHEP 07 (2012) 014 [arXiv:1201.0601] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Duff, J.T. Liu and J. Rahmfeld, Four-dimensional string-string-string triality, Nucl. Phys. B 459 (1996) 125 [hep-th/9508094] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    M. Baggio, J. de Boer, J.I. Jottar and D.R. Mayerson, Conformal Symmetry for Black Holes in Four Dimensions and Irrelevant Deformations, JHEP 04 (2013) 084 [arXiv:1210.7695] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. Chakraborty and C. Krishnan, Subttractors, JHEP 08 (2013) 057 [arXiv:1212.1875] [INSPIRE].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    A. Chakraborty and C. Krishnan, Attraction, with Boundaries, arXiv:1212.6919 [INSPIRE].
  14. [14]
    A. Bergman and O.J. Ganor, Dipoles, twists and noncommutative gauge theory, JHEP 10 (2000) 018 [hep-th/0008030] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    K. Dasgupta and M. Sheikh-Jabbari, Noncommutative dipole field theories, JHEP 02 (2002) 002 [hep-th/0112064] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    A. Bergman, K. Dasgupta, O.J. Ganor, J.L. Karczmarek and G. Rajesh, Nonlocal field theories and their gravity duals, Phys. Rev. D 65 (2002) 066005 [hep-th/0103090] [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    W. Song and A. Strominger, Warped AdS3/Dipole-CFT Duality, JHEP 05 (2012) 120 [arXiv:1109.0544] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    S. El-Showk and M. Guica, Kerr/CFT, dipole theories and nonrelativistic CFTs, JHEP 12 (2012) 009 [arXiv:1108.6091] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT Correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [INSPIRE].MathSciNetADSGoogle Scholar
  20. [20]
    M. Guica, K. Skenderis, M. Taylor and B.C. van Rees, Holography for Schrödinger backgrounds, JHEP 02 (2011) 056 [arXiv:1008.1991] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with non-relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:0807.1100] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    A. Virmani, Subtracted Geometry From Harrison Transformations, JHEP 07 (2012) 086 [arXiv:1203.5088] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    G. Gibbons, A. Mujtaba and C. Pope, Ergoregions in Magnetised Black Hole Spacetimes, Class. Quant. Grav. 30 (2013), no. 12 125008 [arXiv:1301.3927] [INSPIRE].
  24. [24]
    S.S. Yazadjiev, Electrically charged dilaton black holes in external magnetic field, Phys. Rev. D 87 (2013) 084068 [arXiv:1302.5530] [INSPIRE].ADSGoogle Scholar
  25. [25]
    I. Bena, N. Bobev and N.P. Warner, Spectral Flow and the Spectrum of Multi-Center Solutions, Phys. Rev. D 77 (2008) 125025 [arXiv:0803.1203] [INSPIRE].MathSciNetADSGoogle Scholar
  26. [26]
    K. Sfetsos and K. Skenderis, Microscopic derivation of the Bekenstein-Hawking entropy formula for nonextremal black holes, Nucl. Phys. B 517 (1998) 179 [hep-th/9711138] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    S. Hyun, U duality between three-dimensional and higher dimensional black holes, J. Korean Phys. Soc. 33 (1998) S532 [hep-th/9704005] [INSPIRE].ADSGoogle Scholar
  28. [28]
    H.J. Boonstra, B. Peeters and K. Skenderis, Duality and asymptotic geometries, Phys. Lett. B 411 (1997) 59 [hep-th/9706192] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    I. Bena, M. Guica and W. Song, Un-twisting the NHEK with spectral flows, JHEP 03 (2013) 028 [arXiv:1203.4227] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    Z.-W. Chong, M. Cvetič, H. Lü and C. Pope, Charged rotating black holes in four-dimensional gauged and ungauged supergravities, Nucl. Phys. B 717 (2005) 246 [hep-th/0411045] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    X. Dong, S. Harrison, S. Kachru, G. Torroba and H. Wang, Aspects of holography for theories with hyperscaling violation, JHEP 06 (2012) 041 [arXiv:1201.1905] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Sen, Strong - weak coupling duality in three-dimensional string theory, Nucl. Phys. B 434 (1995) 179 [hep-th/9408083] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    G. Bossard, Y. Michel and B. Pioline, Extremal black holes, nilpotent orbits and the true fake superpotential, JHEP 01 (2010) 038 [arXiv:0908.1742] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    S. Bertini, S.L. Cacciatori and D. Klemm, Conformal structure of the Schwarzschild black hole, Phys. Rev. D 85 (2012) 064018 [arXiv:1106.0999] [INSPIRE].ADSGoogle Scholar
  35. [35]
    J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  36. [36]
    G. Papadopoulos and P. Townsend, Intersecting M-branes, Phys. Lett. B 380 (1996) 273 [hep-th/9603087] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    A.A. Tseytlin, Harmonic superpositions of M-branes, Nucl. Phys. B 475 (1996) 149 [hep-th/9604035] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP 12 (1997) 002 [hep-th/9711053] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    M. Cvetič and F. Larsen, Near horizon geometry of rotating black holes in five-dimensions, Nucl. Phys. B 531 (1998) 239 [hep-th/9805097] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    I. Bena and C. Ciocarlie, Exact N = 2 supergravity solutions with polarized branes, Phys. Rev. D 70 (2004) 086005 [hep-th/0212252] [INSPIRE].MathSciNetADSGoogle Scholar
  41. [41]
    B.C. van Rees, Holographic renormalization for irrelevant operators and multi-trace counterterms, JHEP 08 (2011) 093 [arXiv:1102.2239] [INSPIRE].CrossRefGoogle Scholar
  42. [42]
    B.C. van Rees, Irrelevant deformations and the holographic Callan-Symanzik equation, JHEP 10 (2011) 067 [arXiv:1105.5396] [INSPIRE].CrossRefGoogle Scholar
  43. [43]
    G. Compere, W. Song and A. Virmani, Microscopics of Extremal Kerr from Spinning M5 Branes, JHEP 10 (2011) 087 [arXiv:1010.0685] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    S. Giusto, S.D. Mathur and A. Saxena, Dual geometries for a set of 3-charge microstates, Nucl. Phys. B 701 (2004) 357 [hep-th/0405017] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Mirjam Cvetič
    • 1
    • 2
  • Monica Guica
    • 1
  • Zain H. Saleem
    • 1
  1. 1.Department of Physics and AstronomyUniversity of PennsylvaniaPhiladelphiaU.S.A.
  2. 2.Center for Applied Mathematics and Theoretical PhysicsUniversity of MariborMariborSlovenia

Personalised recommendations