Advertisement

Journal of High Energy Physics

, 2012:127 | Cite as

N = 2 generalized superconformal quiver gauge theory

  • Dimitri Nanopoulos
  • Dan Xie
Article

Abstract

Four dimensional \( \mathcal{N} = 2 \) generalized superconformal field theory can be defined by compactifying six dimensional A N (2, 0) theory on a Riemann surface with regular punctures. In previous studies, gauge coupling constant space is identified with the moduli space of punctured Riemann surface M g,n . We show that the weakly coupled gauge group description corresponds to a stable nodal curve, and the coupling space is actually the Deligne-Mumford compactification \( {\overline M_{g,n}} \). We also give an algorithm to determine the weakly coupled gauge groups and matter contents in any duality frame.

Keywords

Extended Supersymmetry Duality in Gauge Field Theories Field Theories in Higher Dimensions 

References

  1. [1]
    P.C. Argyres and N. Seiberg, S-duality in N = 2 supersymmetric gauge theories, JHEP 12 (2007) 088 [arXiv:0711.0054] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin Systems and the WKB Approximation, arXiv:0907.3987 [INSPIRE].
  4. [4]
    D. Nanopoulos and D. Xie, Hitchin equation, singularity and N = 2 superconformal field theories, JHEP 03 (2010) 043 [arXiv:0911.1990] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    N. Hitchin, The self-duality equation on a Riemann surface, Proc. London Math. Soc. 55 (1987) 59.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    N. Hitchin, Stable bundles and integrable systems, Duke Math. J. 54 (1987) 91.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    K. Hori et al., Mirror symmetry, Clay Mathematics Monographs volume 2, American Mathematical Society, U.S.A. (2003).Google Scholar
  9. [9]
    D. Friedan and S. Shenker, The analytic geometry of two-dimensional conformal field theory, Nucl. Phys. B 281 (1987) 509 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    S. Gukov and E. Witten, Gauge theory, ramification, and the geometric Langlands program, hep-th/0612073 [INSPIRE].
  11. [11]
    P. Kronheimer, Instantons and the geometry of the nilpotent variety, J. Diff. Geom. 32 (1990) 473 [INSPIRE].MathSciNetMATHGoogle Scholar
  12. [12]
    P. Kronheimer, A hyper-kahlerian structure on coadjoint orbits of a semisimple complex group, J. London Math. Soc. 42 (1990) 193.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    D. Collingwood and W. McGovern, Nilpotent orbits in semisimple lie algebra, VanNostrand Reinhold Mathematical Series, New York U.S.A. (1993).Google Scholar
  14. [14]
    D. Gaiotto and J. Maldacena, The gravity duals of N = 2 superconformal field theories, arXiv:0904.4466 [INSPIRE].
  15. [15]
    Y. Tachikawa, Six-dimensional D(N ) theory and four-dimensional SO-USp quivers, JHEP 07 (2009) 067 [arXiv:0905.4074] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    F. Benini, S. Benvenuti and Y. Tachikawa, Webs of five-branes and N = 2 superconformal field theories, JHEP 09 (2009) 052 [arXiv:0906.0359] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    K. Maruyoshi, M. Taki, S. Terashima and F. Yagi, New Seiberg dualities from N = 2 dualities, JHEP 09 (2009) 086 [arXiv:0907.2625] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    D. Nanopoulos and D. Xie, N = 2 SU quiver with USp ends or SU ends with antisymmetric matter, JHEP 08 (2009) 108 [arXiv:0907.1651] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    F. Benini, Y. Tachikawa and B. Wecht, Sicilian gauge theories and N = 1 dualities, JHEP 01 (2010) 088 [arXiv:0909.1327] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    A. Gadde, E. Pomoni, L. Rastelli and S.S. Razamat, S-duality and 2D topological QFT, JHEP 03 (2010) 032 [arXiv:0910.2225] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, The superconformal index of the E 6 SCFT, JHEP 08 (2010) 107 [arXiv:1003.4244] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  23. [23]
    K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B 387 (1996) 513 [hep-th/9607207] [INSPIRE].MathSciNetADSGoogle Scholar
  24. [24]
    F. Benini, Y. Tachikawa and D. Xie, Mirrors of 3D Sicilian theories, JHEP 09 (2010) 063 [arXiv:1007.0992] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    D. Nanopoulos and D. Xie, More three dimensional mirror pairs, JHEP 05 (2011) 071 [arXiv:1011.1911] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    O. Chacaltana and J. Distler, Tinkertoys for Gaiotto duality, JHEP 11 (2010) 099 [arXiv:1008.5203] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    K. Landsteiner, E. Lopez and D.A. Lowe, N = 2 supersymmetric gauge theories, branes and orientifolds, Nucl. Phys. B 507 (1997) 197 [hep-th/9705199] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    A. Brandhuber, J. Sonnenschein, S. Theisen and S. Yankielowicz, M theory and Seiberg-Witten curves: orthogonal and symplectic groups, Nucl. Phys. B 504 (1997) 175 [hep-th/9705232] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.George P. and Cynthia W. Mitchell Institute for Fundamental PhysicsTexas A&M UniversityCollege StationU.S.A.
  2. 2.Astroparticle physics GroupHouston Advanced Research Center (HARC)WoodlandsU.S.A.
  3. 3.Academy of Athens, Division of Nature SciencesAthensGreece

Personalised recommendations