Advertisement

Journal of High Energy Physics

, 2012:87 | Cite as

Three-point functions of BMN operators at weak and strong coupling II. One loop matching

  • Gianluca Grignani
  • A. V. Zayakin
Article

Abstract

In a previous paper JHEP 06 (2012) 142 142 we have shown that the fully dynamical three-point correlation functions of BMN operators are identical at the tree level in the planar limit of perturbative field theory and, on the string theory side, calculated by means of the Dobashi-Yoneya three string vertex in the Penrose limit. Here we present a one-loop calculation of the same quantity both on the field-theory and string-theory side, where a complete identity between the two results is demonstrated.

Keywords

1/N Expansion String Field Theory Penrose limit and pp-wave background AdS-CFT Correspondence 

References

  1. [1]
    E. Buchbinder and A. Tseytlin, On semiclassical approximation for correlators of closed string vertex operators in AdS/CFT, JHEP 08 (2010) 057 [arXiv:1005.4516] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    M.S. Costa, R. Monteiro, J.E. Santos and D. Zoakos, On three-point correlation functions inthe gauge/gravity duality, JHEP 11 (2010) 141 [arXiv:1008.1070] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    R. Roiban and A. Tseytlin, On semiclassical computation of 3-point functions of closed string vertex operators in AdS 5 × S 5, Phys. Rev. D 82 (2010) 106011 [arXiv:1008.4921] [INSPIRE].ADSGoogle Scholar
  4. [4]
    K. Zarembo, Holographic three-point functions of semiclassical states, JHEP 09 (2010) 030 [arXiv:1008.1059] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    E. Buchbinder and A. Tseytlin, Semiclassical correlators of three states with large S 5 charges in string theory in AdS 5 × S 5, Phys. Rev. D 85 (2012) 026001 arXiv:1110.5621] [INSPIRE].ADSGoogle Scholar
  6. [6]
    M. Michalcik, R.C. Rashkov and M. Schimpf, On semiclassical calculation of three-point functions in AdS 5 × T (1,1), Mod. Phys. Lett. A 27 (2012) 1250091 [arXiv:1107.5795] [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    T. Klose and T. McLoughlin, A light-cone approach to three-point functions in AdS 5 × S 5, JHEP 04 (2012) 080 [arXiv:1106.0495] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    G. Georgiou, Two and three-point correlators of operators dual to folded string solutions at strong coupling, JHEP 02 (2011) 046 [arXiv:1011.5181] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    R. Hernandez, Three-point correlation functions from semiclassical circular strings, J. Phys. A 44 (2011) 085403 [arXiv:1011.0408] [INSPIRE].ADSGoogle Scholar
  10. [10]
    D. Arnaudov and R. Rashkov, On semiclassical calculation of three-point functions in AdS 4 × CP 3, Phys. Rev. D 83 (2011) 066011 [arXiv:1011.4669] [INSPIRE].ADSGoogle Scholar
  11. [11]
    C. Park and B.-H. Lee, Correlation functions of magnon and spike, Phys. Rev. D 83 (2011) 126004 [arXiv:1012.3293] [INSPIRE].ADSGoogle Scholar
  12. [12]
    J. Russo and A. Tseytlin, Large spin expansion of semiclassical 3-point correlators in AdS 5 × S 5, JHEP 02 (2011) 029 [arXiv:1012.2760] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    D. Bak, B. Chen and J.-B. Wu, Holographic correlation functions for open strings and branes, JHEP 06 (2011) 014 [arXiv:1103.2024] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    D. Arnaudov, R. Rashkov and T. Vetsov, Three and four-point correlators of operators dual to folded string solutions in AdS 5 × S 5, Int. J. Mod. Phys. A 26 (2011) 3403 [arXiv:1103.6145] [INSPIRE].MathSciNetADSGoogle Scholar
  15. [15]
    R. Hernandez, Three-point correlators for giant magnons, JHEP 05 (2011) 123 [arXiv:1104.1160] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    X. Bai, B.-H. Lee and C. Park, Correlation function of dyonic strings, Phys. Rev. D 84 (2011) 026009 [arXiv:1104.1896] [INSPIRE].ADSGoogle Scholar
  17. [17]
    C. Ahn and P. Bozhilov, Three-point correlation functions of giant magnons with finite size, Phys. Lett. B 702 (2011) 286 [arXiv:1105.3084] [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    D. Arnaudov, R. Rashkov and R. Rashkov, Quadratic corrections to three-point functions, Fortsch. Phys. 60 (2012) 217 [arXiv:1106.0859] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  19. [19]
    R.A. Janik and A. Wereszczynski, Correlation functions of three heavy operators: the AdS contribution, JHEP 12 (2011) 095 [arXiv:1109.6262] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. Escobedo, N. Gromov, A. Sever and P. Vieira, Tailoring three-point functions and integrability II. Weak/strong coupling match, JHEP 09 (2011) 029 [arXiv:1104.5501] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    J. Escobedo, N. Gromov, A. Sever and P. Vieira, Tailoring three-point functions and integrability, JHEP 09 (2011) 028 [arXiv:1012.2475] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    N. Gromov, A. Sever and P. Vieira, Tailoring three-point functions and integrability III. Classical tunneling, JHEP 07 (2012) 044 [arXiv:1111.2349] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    N. Gromov and P. Vieira, Quantum integrability for three-point functions, arXiv:1202.4103 [INSPIRE].
  24. [24]
    D. Serban, A note on the eigenvectors of long-range spin chains and their scalar products, arXiv:1203.5842 [INSPIRE].
  25. [25]
    I. Kostov, Classical limit of the three-point function of N = 4 supersymmetric Yang-Mills theory from integrability, Phys. Rev. Lett. 108 (2012) 261604 [arXiv:1203.6180] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    G. Grignani and A. Zayakin, Matching three-point functions of BMN operators at weak and strong coupling, JHEP 06 (2012) 142 [arXiv:1204.3096] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    K. Okuyama and L.-S. Tseng, Three-point functions in N = 4 SYM theory at one-loop, JHEP 08 (2004) 055 [hep-th/0404190] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    L.F. Alday, J.R. David, E. Gava and K. Narain, Structure constants of planar N = 4 Yang-Mills at one loop, JHEP 09 (2005) 070 [hep-th/0502186] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    G. Georgiou, V. Gili, A. Grossardt and J. Plefka, Three-point functions in planar N = 4 super Yang-Mills Theory for scalar operators up to length five at the one-loop order, JHEP 04 (2012) 038 [arXiv:1201.0992] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    A. Bissi, T. Harmark and M. Orselli, Holographic 3-point function at one loop, JHEP 02 (2012)133 [arXiv:1112.5075] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    A. Bissi, C. Kristjansen, D. Young and K. Zoubos, Holographic three-point functions of giant gravitons, JHEP 06 (2011) 085 [arXiv:1103.4079] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    O. Foda, N = 4 SYM structure constants as determinants, JHEP 03 (2012) 096 [arXiv:1111.4663] [INSPIRE].MathSciNetADSGoogle Scholar
  33. [33]
    S. Frolov and A.A. Tseytlin, Rotating string solutions: AdS/CFT duality in nonsupersymmetric sectors, Phys. Lett. B 570 (2003) 96 [hep-th/0306143] [INSPIRE].MathSciNetADSGoogle Scholar
  34. [34]
    T. Harmark, K.R. Kristjansson and M. Orselli, Matching gauge theory and string theory in a decoupling limit of AdS/CFT, JHEP 02 (2009) 027 [arXiv:0806.3370] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N =4 super Yang-Mills,JHEP 04(2002)013 [hep-th/0202021][INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    M. Spradlin and A. Volovich, Superstring interactions in a pp wave background. 2, JHEP 01 (2003)036 [hep-th/0206073] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    S. Dobashi, H. Shimada and T. Yoneya, Holographic reformulation of string theory on AdS 5 × S 5 background in the pp wave limit, Nucl. Phys. B 665 (2003) 94 [hep-th/0209251] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    J. Pearson, M. Spradlin, D. Vaman, H.L. Verlinde and A. Volovich, Tracing the string: BMN correspondence at finite J 2 /N , JHEP 05 (2003) 022 [hep-th/0210102] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    A. Pankiewicz and B.J. Stefanski, pp wave light cone superstring field theory, Nucl. Phys. B 657 (2003)79 [hep-th/0210246] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    Y.-H. He, J.H. Schwarz, M. Spradlin and A. Volovich, Explicit formulas for Neumann coefficients in the plane wave geometry, Phys. Rev. D 67 (2003) 086005 [hep-th/0211198] [INSPIRE].MathSciNetADSGoogle Scholar
  41. [41]
    A. Pankiewicz and B.J. Stefanski, On the uniqueness of plane wave string field theory, hep-th/0308062 [INSPIRE].
  42. [42]
    P. Di Vecchia, J.L. Petersen, M. Petrini, R. Russo and A. Tanzini, The three string vertex and the AdS/CFT duality in the pp wave limit, Class. Quant. Grav. 21 (2004) 2221 [hep-th/0304025] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  43. [43]
    S. Dobashi and T. Yoneya, Resolving the holography in the plane-wave limit of AdS/CFT correspondence, Nucl. Phys. B 711 (2005) 3 [hep-th/0406225] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    S. Dobashi and T. Yoneya, Impurity non-preserving 3-point correlators of BMN operators from pp-wave holography. I. Bosonic excitations, Nucl. Phys. B 711 (2005) 54 [hep-th/0409058] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    H. Shimada, Holography at string field theory level: conformal three point functions of BMN operators, Phys. Lett. B 647 (2007) 211 [hep-th/0410049] [INSPIRE].MathSciNetADSGoogle Scholar
  46. [46]
    S. Lee and R. Russo, Holographic cubic vertex in the pp-wave, Nucl. Phys. B 705 (2005) 296 [hep-th/0409261] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    G. Grignani, M. Orselli, B. Ramadanovic, G.W. Semenoff and D. Young, Divergence cancellation and loop corrections in string field theory on a plane wave background, JHEP 12 (2005) 017 [hep-th/0508126] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    G. Grignani, M. Orselli, B. Ramadanovic, G.W. Semenoff and D. Young, AdS/CFT versus string loops, JHEP 06 (2006) 040 [hep-th/0605080] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    C. Kristjansen, J. Plefka, G. Semenoff and M. Staudacher, A new double scaling limit of N =4 super Yang-Mills theory and pp wave strings,Nucl. Phys. B 643(2002)3 [hep-th/0205033] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    N. Beisert, C. Kristjansen, J. Plefka, G. Semenoff and M. Staudacher, BMN correlators and operator mixing in N = 4 super Yang-Mills theory, Nucl. Phys. B 650 (2003) 125 [hep-th/0208178] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    N. Beisert, C. Kristjansen and M. Staudacher, The dilatation operator of conformal N = 4 super Yang-Mills theory, Nucl. Phys. B 664 (2003) 131 [hep-th/0303060] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    G. Georgiou, V.L. Gili and R. Russo, Operator mixing and the AdS/CFT correspondence, JHEP 01 (2009) 082 [arXiv:0810.0499] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    G. Georgiou, V.L. Gili and R. Russo, Operator mixing and three-point functions in N = 4 SYM, JHEP 10 (2009) 009 [arXiv:0907.1567] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    J. Minahan and K. Zarembo, The Bethe ansatz for N = 4 super Yang-Mills, JHEP 03 (2003) 013 [hep-th/0212208] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità di Perugia and INFN — Sezione di PerugiaPerugiaItaly
  2. 2.Institute of Theoretical and Experimental PhysicsMoscowRussia

Personalised recommendations