Journal of High Energy Physics

, 2012:75 | Cite as

Note on non-Abelian two-form gauge fields

  • Pei-Ming Ho
  • Yutaka Matsuo


Motivated by application to multiple M5-branes, we study some properties of non-Abelian two-form gauge theories. We emphasize that the fake curvature condition which is commonly used in the literature would restrict the dynamics to be either a free theory or a topological system. We then propose a modification of transformation law which simplifies the gauge transformation of 3-form field strength and enables us to write down a gauge invariant action. We then argue that a generalization of Stueckelberg mechanism naturally gives mass to the two-form gauge field. For the application to multiple M5-branes, it should be identified with the KK modes.


Gauge Symmetry Brane Dynamics in Gauge Theories M-Theory 


  1. [1]
    M.R. Douglas, On D = 5 super Yang-Mills theory and (2,0) theory, JHEP 02 (2011) 011 [arXiv:1012.2880] [INSPIRE].ADSGoogle Scholar
  2. [2]
    N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, M5-Branes, D4-branes and Quantum 5D super-Yang-Mills, JHEP 01 (2011) 083 [arXiv:1012.2882] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    P. Aschieri and B. Jurčo, Gerbes, M5-brane anomalies and E 8 gauge theory, JHEP 10 (2004) 068 [hep-th/0409200] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    N. Lambert and C. Papageorgakis, Nonabelian (2,0) Tensor Multiplets and 3-algebras, JHEP 08 (2010) 083 [arXiv:1007.2982] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    S. Kawamoto, T. Takimi and D. Tomino, Branes from a non-Abelian (2,0) tensor multiplet with 3-algebra, J. Phys. A 44 (2011) 325402 [arXiv:1103.1223] [INSPIRE].MathSciNetGoogle Scholar
  6. [6]
    Y. Honma, M. Ogawa and S. Shiba, Dp-branes, NS5-branes and U-duality from nonabelian (2,0) theory with Lie 3-algebra, JHEP 04 (2011) 117 [arXiv:1103.1327] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    P.-M. Ho, K.-W. Huang and Y. Matsuo, A Non-Abelian Self-Dual Gauge Theory in 5 + 1 Dimensions, JHEP 07 (2011) 021 [arXiv:1104.4040] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    K.-W. Huang, Non-Abelian Chiral 2-Form and M5-Branes, arXiv:1206.3983 [INSPIRE].
  9. [9]
    H. Samtleben, E. Sezgin and R. Wimmer, (1,0) superconformal models in six dimensions, JHEP 12 (2011) 062 [arXiv:1108.4060] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    C.-S. Chu and S.-L. Ko, Non-abelian Action for Multiple Five-Branes with Self-Dual Tensors, JHEP 05 (2012) 028 [arXiv:1203.4224] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    B. Czech, Y.-t. Huang and M. Rozali, Amplitudes for Multiple M5 Branes, arXiv:1110.2791 [INSPIRE].
  12. [12]
    D. Fiorenza, H. Sati and U. Schreiber, Multiple M5-branes, String 2-connections and 7d nonabelian Chern-Simons theory, arXiv:1201.5277 [INSPIRE].
  13. [13]
    S. Palmer and C. Sämann, M-brane Models from Non-Abelian Gerbes, JHEP 07 (2012) 010 [arXiv:1203.5757] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    C. Sämann and M. Wolf, Non-Abelian Tensor Multiplet Equations from Twistor Space, arXiv:1205.3108 [INSPIRE].
  15. [15]
    L. Breen and W. Messing, Differential geometry of GERBES, Adv. Math. 198 (2005) 732 [math/0106083] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    J.C. Baez and J. Huerta, An Invitation to Higher Gauge Theory, arXiv:1003.4485 [INSPIRE].
  17. [17]
    J.-L. Brylinski, Loop Spaces, Characteristic Classes and Geometric Quantization, Birkhäuser, Boston U.S.A. (1993).Google Scholar
  18. [18]
    M. Perry and J.H. Schwarz, Interacting chiral gauge fields in six-dimensions and Born-Infeld theory, Nucl. Phys. B 489 (1997) 47 [hep-th/9611065] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    M. Aganagic, J. Park, C. Popescu and J.H. Schwarz, World volume action of the M-theory five-brane, Nucl. Phys. B 496 (1997) 191 [hep-th/9701166] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    P. Pasti, D.P. Sorokin and M. Tonin, On Lorentz invariant actions for chiral p forms, Phys. Rev. D 55 (1997) 6292 [hep-th/9611100] [INSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    P. Pasti, D.P. Sorokin and M. Tonin, Covariant action for a D = 11 five-brane with the chiral field, Phys. Lett. B 398 (1997) 41 [hep-th/9701037] [INSPIRE].MathSciNetADSGoogle Scholar
  22. [22]
    H.-C. Kim, S. Kim, E. Koh, K. Lee and S. Lee, On instantons as Kaluza-Klein modes of M5-branes, JHEP 12 (2011) 031 [arXiv:1110.2175] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of Physics and Center for Theoretical Sciences, Center for Advanced Study in Theoretical Sciences, National Center for Theoretical SciencesNational Taiwan UniversityTaipeiR.O.C
  2. 2.Department of Physics, Faculty of ScienceUniversity of TokyoTokyoJapan

Personalised recommendations