Journal of High Energy Physics

, 2012:59 | Cite as

Non-Abelian discrete gauge symmetries in 4d string models

  • M. Berasaluce-González
  • P. G. Cámara
  • F. Marchesano
  • D. Regalado
  • A. M. Uranga


We study the realization of non-Abelian discrete gauge symmetries in 4d field theory and string theory compactifications. The underlying structure generalizes the Abelian case, and follows from the interplay between gaugings of non-Abelian isometries of the scalar manifold and field identifications making axion-like fields periodic. We present several classes of string constructions realizing non-Abelian discrete gauge symmetries. In particular, compactifications with torsion homology classes, where non-Abelianity arises microscopically from the Hanany-Witten effect, or compactifications with non-Abelian discrete isometry groups, like twisted tori. We finally focus on the more interesting case of magnetized branes in toroidal compactifications and quotients thereof (and their heterotic and intersecting duals), in which the non-Abelian discrete gauge symmetries imply powerful selection rules for Yukawa couplings of charged matter fields. In particular, in MSSM-like models they correspond to discrete flavour symmetries constraining the quark and lepton mass matrices, as we show in specific examples.


Compactification and String Models Discrete and Finite Symmetries Solitons Monopoles and Instantons Intersecting branes models 


  1. [1]
    T. Banks and L.J. Dixon, Constraints on String Vacua with Space-Time Supersymmetry, Nucl. Phys. B 307 (1988) 93 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    L.F. Abbott and M.B. Wise, Wormholes and global symmetries, Nucl. Phys. B 325 (1989) 687 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    S.R. Coleman and K.-M. Lee, Wormholes made without massless matter fields, Nucl. Phys. B 329 (1990) 387 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    R. Kallosh, A.D. Linde, D.A. Linde and L. Susskind, Gravity and global symmetries, Phys. Rev. D 52 (1995) 912 [hep-th/9502069] [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].ADSGoogle Scholar
  6. [6]
    M.G. Alford and F. Wilczek, Aharonov-Bohm Interaction of Cosmic Strings with Matter, Phys. Rev. Lett. 62 (1989) 1071 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    L.M. Krauss and F. Wilczek, Discrete Gauge Symmetry in Continuum Theories, Phys. Rev. Lett. 62 (1989) 1221 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M.G. Alford, J. March-Russell and F. Wilczek, Discrete quantum hair on black holes and the nonabelian Aharonov-Bohm effect, Nucl. Phys. B 337 (1990) 695 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J. Preskill and L.M. Krauss, Local discrete symmetry and quantum mechanical hair, Nucl. Phys. B 341 (1990) 50 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    M.G. Alford, K. Benson, S.R. Coleman, J. March-Russell and F. Wilczek, The interactions and excitations of nonabelian vortices, Phys. Rev. Lett. 64 (1990) 1632 [Erratum ibid. 65 (1990) 668] [INSPIRE].
  11. [11]
    M.G. Alford, S.R. Coleman and J. March-Russell, Disentangling nonAbelian discrete quantum hair, Nucl. Phys. B 351 (1991) 735 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    M.G. Alford and J. March-Russell, Discrete gauge theories, Int. J. Mod. Phys. B 5 (1991) 2641 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    M.G. Alford, K.-M. Lee, J. March-Russell and J. Preskill, Quantum field theory of nonAbelian strings and vortices, Nucl. Phys. B 384 (1992) 251 [hep-th/9112038] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    P.G. Camara, L.E. Ibáñez and F. Marchesano, RR photons, JHEP 09 (2011) 110 [arXiv:1106.0060] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Berasaluce-Gonzalez, L.E. Ibáñez, P. Soler and A.M. Uranga, Discrete gauge symmetries in D-brane models, JHEP 12 (2011) 113 [arXiv:1106.4169] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    L. Ibáñez, A. Schellekens and A. Uranga, Discrete Gauge Symmetries in Discrete MSSM-like Orientifolds, arXiv:1205.5364 [INSPIRE].
  17. [17]
    L.E. Ibáñez and G.G. Ross, Discrete gauge symmetry anomalies, Phys. Lett. B 260 (1991) 291 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    L.E. Ibáñez and G.G. Ross, Discrete gauge symmetries and the origin of baryon and lepton number conservation in supersymmetric versions of the standard model, Nucl. Phys. B 368 (1992) 3 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    T. Banks and M. Dine, Note on discrete gauge anomalies, Phys. Rev. D 45 (1992) 1424 [hep-th/9109045] [INSPIRE].MathSciNetADSGoogle Scholar
  20. [20]
    L.E. Ibáñez, More about discrete gauge anomalies, Nucl. Phys. B 398 (1993) 301 [hep-ph/9210211] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S.P. Martin, Some simple criteria for gauged R-parity, Phys. Rev. D 46 (1992) 2769 [hep-ph/9207218] [INSPIRE].ADSGoogle Scholar
  22. [22]
    H.K. Dreiner, C. Luhn and M. Thormeier, What is the discrete gauge symmetry of the MSSM?, Phys. Rev. D 73 (2006) 075007 [hep-ph/0512163] [INSPIRE].ADSGoogle Scholar
  23. [23]
    R.N. Mohapatra and M. Ratz, Gauged Discrete Symmetries and Proton Stability, Phys. Rev. D 76 (2007) 095003 [arXiv:0707.4070] [INSPIRE].ADSGoogle Scholar
  24. [24]
    T. Araki, T. Kobayashi, J. Kubo, S. Ramos-Sanchez, M. Ratz and P.K.S. Vaudrevange, (Non-)Abelian discrete anomalies, Nucl. Phys. B 805 (2008) 124 [arXiv:0805.0207] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    H.M. Lee, S. Raby, M. Ratz, G.G. Ross, R. Schieren, et al., A unique \( Z_4^R \) symmetry for the MSSM, Phys. Lett. B 694 (2011) 491 [arXiv:1009.0905] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    R. Kappl, B. Petersen, S. Raby, M. Ratz, R. Schieren and P.K.S. Vaudrevange, String-Derived MSSM Vacua with Residual R Symmetries, Nucl. Phys. B 847 (2011) 325 [arXiv:1012.4574] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    O. Lebedev et al., The Heterotic Road to the MSSM with R parity, Phys. Rev. D 77 (2008) 046013 [arXiv:0708.2691] [INSPIRE].ADSGoogle Scholar
  28. [28]
    S. Gukov, M. Rangamani and E. Witten, Dibaryons, strings and branes in AdS orbifold models, JHEP 12 (1998) 025 [hep-th/9811048] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    B.A. Burrington, J.T. Liu and L.A. Pando Zayas, Finite Heisenberg groups in quiver gauge theories, Nucl. Phys. B 747 (2006) 436 [hep-th/0602094] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    B.A. Burrington, J.T. Liu and L.A. Pando Zayas, Finite Heisenberg groups from nonAbelian orbifold quiver gauge theories, Nucl. Phys. B 794 (2008) 324 [hep-th/0701028] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    D. Cremades, L. Ibáñez and F. Marchesano, Yukawa couplings in intersecting D-brane models, JHEP 07 (2003) 038 [hep-th/0302105] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    D. Cremades, L. Ibáñez and F. Marchesano, Computing Yukawa couplings from magnetized extra dimensions, JHEP 05 (2004) 079 [hep-th/0404229] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    D. Cremades, L. Ibáñez and F. Marchesano, More about the standard model at intersecting branes, hep-ph/0212048 [INSPIRE].
  34. [34]
    H. Abe, K.-S. Choi, T. Kobayashi and H. Ohki, Non-Abelian Discrete Flavor Symmetries from Magnetized/Intersecting Brane Models, Nucl. Phys. B 820 (2009) 317 [arXiv:0904.2631] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    H. Abe, K.-S. Choi, T. Kobayashi, H. Ohki and M. Sakai, Non-Abelian Discrete Flavor Symmetries on Orbifolds, Int. J. Mod. Phys. A 26 (2011) 4067 [arXiv:1009.5284] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    S. Hellerman and E. Sharpe, Sums over topological sectors and quantization of Fayet-Iliopoulos parameters, Adv. Theor. Math. Phys. 15 (2011) 1141 [arXiv:1012.5999] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  37. [37]
    K.-M. Lee, NonAbelian discrete gauge theory,, Ph.D. Thesis, Caltech University, U.S.A. (1994) [INSPIRE].
  38. [38]
    T. Ortin, Gravity and strings,, Cambridge University Press (2004).Google Scholar
  39. [39]
    D. Andriot, E. Goi, R. Minasian and M. Petrini, Supersymmetry breaking branes on solvmanifolds and de Sitter vacua in string theory, JHEP 05 (2011) 028 [arXiv:1003.3774] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    A.I. Malc’ev, On a class of homogeneous spaces, Izv. Akad. Nauk SSSR Ser. Mat. 13 (1949) 9 [English translation Amer. Math. Soc. Transl. 39 (1962) 33].Google Scholar
  41. [41]
    C. Hull and B.J. Spence, The Geometry of the gauged σ-model with Wess-Zumino term, Nucl. Phys. B 353 (1991) 379 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    R. Blumenhagen, M. Cvetič and T. Weigand, Spacetime instanton corrections in 4D string vacua: The Seesaw mechanism for D-brane models, Nucl. Phys. B 771 (2007) 113 [hep-th/0609191] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    L.E. Ibáñez and A. Uranga, Neutrino Majorana Masses from String Theory Instanton Effects, JHEP 03 (2007) 052 [hep-th/0609213] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    B. Florea, S. Kachru, J. McGreevy and N. Saulina, Stringy Instantons and Quiver Gauge Theories, JHEP 05 (2007) 024 [hep-th/0610003] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].MathSciNetADSGoogle Scholar
  46. [46]
    S. Kachru, M.B. Schulz, P.K. Tripathy and S.P. Trivedi, New supersymmetric string compactifications, JHEP 03 (2003) 061 [hep-th/0211182] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    F. Marchesano, D6-branes and torsion, JHEP 05 (2006) 019 [hep-th/0603210] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    L. Castellani, L. Romans and N. Warner, Symmetries of coset spaces and Kaluza-Klein supergravity, Annals Phys. 157 (1984) 394 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    R. Coquereaux and A. Jadczyk, Riemannian geometry, fiber bundles, Kaluza-Klein theories and all that, World Sci. Lect. Notes Phys. 16 (1988) 1.MathSciNetCrossRefGoogle Scholar
  50. [50]
    N. Kaloper and R.C. Myers, The Odd story of massive supergravity, JHEP 05 (1999) 010 [hep-th/9901045] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    L.E. Ibanez and A. M. Uranga, String theory and particle physics: An introduction to string phenomenology, Cambridge University Press (2012).Google Scholar
  52. [52]
    G. Aldazabal, P.G. Camara and J. Rosabal, Flux algebra, Bianchi identities and Freed-Witten anomalies in F-theory compactifications, Nucl. Phys. B 814 (2009) 21 [arXiv:0811.2900] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    I. Antoniadis, C. Bachas, C. Fabre, H. Partouche and T. Taylor, Aspects of type-I - type-II - heterotic triality in four-dimensions, Nucl. Phys. B 489 (1997) 160 [hep-th/9608012] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    G. Aldazabal, A. Font, L.E. Ibáñez and G. Violero, D = 4, N = 1, type IIB orientifolds, Nucl. Phys. B 536 (1998) 29 [hep-th/9804026] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    F. Marchesano and G. Shiu, MSSM vacua from flux compactifications, Phys. Rev. D 71 (2005) 011701 [hep-th/0408059] [INSPIRE].ADSGoogle Scholar
  56. [56]
    F. Marchesano and G. Shiu, Building MSSM flux vacua, JHEP 11 (2004) 041 [hep-th/0409132] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    S.A. Abel and M.D. Goodsell, Realistic Yukawa Couplings through Instantons in Intersecting Brane Worlds, JHEP 10 (2007) 034 [hep-th/0612110] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    D. Lüst, P. Mayr, R. Richter and S. Stieberger, Scattering of gauge, matter and moduli fields from intersecting branes, Nucl. Phys. B 696 (2004) 205 [hep-th/0404134] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    P.G. Camara, C. Condeescu and E. Dudas, Holomorphic variables in magnetized brane models with continuous Wilson lines, JHEP 04 (2010) 029 [arXiv:0912.3369] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    A.M. Uranga, Local models for intersecting brane worlds, JHEP 12 (2002) 058 [hep-th/0208014] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  61. [61]
    T. Kobayashi, H.P. Nilles, F. Ploger, S. Raby and M. Ratz, Stringy origin of non-Abelian discrete flavor symmetries, Nucl. Phys. B 768 (2007) 135 [hep-ph/0611020] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  62. [62]
    H.P. Nilles, M. Ratz and P.K. Vaudrevange, Origin of family symmetries, arXiv:1204.2206 [INSPIRE].
  63. [63]
    P.G. Camara and F. Marchesano, Open string wavefunctions in flux compactifications, JHEP 10 (2009) 017 [arXiv:0906.3033] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • M. Berasaluce-González
    • 1
    • 2
  • P. G. Cámara
    • 3
  • F. Marchesano
    • 2
  • D. Regalado
    • 1
    • 2
  • A. M. Uranga
    • 2
  1. 1.Departamento de Física TeóricaUniversidad Autónoma de MadridMadridSpain
  2. 2.Instituto de Física Teórica IFT-UAM/CSICC/ Nicolás Cabrera 13-15, Universidad Autónoma de MadridMadridSpain
  3. 3.Departament de Física Fonamental and Institut de Ciències del CosmosUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations