Journal of High Energy Physics

, 2012:57 | Cite as

Ladders for Wilson loops beyond leading order



We set up a general scheme to resum ladder diagrams for the quark-anti-quark potential in \( \mathcal{N} \) = 4 super-Yang-Mills theory, and do explicit calculations at the next-to-leading order. The results perfectly agree with string theory in AdS 5× S 5 when continued to strong coupling, in spite of a potential order-of-limits problem.


Wilson ’t Hooft and Polyakov loops AdS-CFT Correspondence Supersymmetric gauge theory 1/N Expansion 


  1. [1]
    J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  2. [2]
    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and Anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    N. Drukker, D.J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev. D 60 (1999) 125006 [hep-th/9904191] [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    D. Correa, J. Henn, J. Maldacena and A. Sever, The cusp anomalous dimension at three loops and beyond, JHEP 05 (2012) 098 [arXiv:1203.1019] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    N. Drukker, Integrable Wilson loops, arXiv:1203.1617 [INSPIRE].
  6. [6]
    D. Correa, J. Maldacena and A. Sever, The quark anti-quark potential and the cusp anomalous dimension from a TBA equation, JHEP 08 (2012) 134 [arXiv:1203.1913] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J. Erickson, G. Semenoff, R. Szabo and K. Zarembo, Static potential in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 61 (2000) 105006 [hep-th/9911088] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    E. Shuryak and I. Zahed, Understanding the strong coupling limit of the N = 4 supersymmetric Yang-Mills at finite temperature, Phys. Rev. D 69 (2004) 046005 [hep-th/0308073] [INSPIRE].ADSGoogle Scholar
  9. [9]
    J. Erickson, G. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    I.R. Klebanov, J.M. Maldacena and C.B. Thorn, Dynamics of flux tubes in large-N gauge theories, JHEP 04 (2006) 024 [hep-th/0602255] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    T. Appelquist, M. Dine and I. Muzinich, The static limit of quantum chromodynamics, Phys. Rev. D 17 (1978) 2074 [INSPIRE].ADSGoogle Scholar
  12. [12]
    A. Pineda, The static potential in N = 4 supersymmetric Yang-Mills at weak coupling, Phys. Rev. D 77 (2008) 021701 [arXiv:0709.2876] [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    N. Drukker and V. Forini, Generalized quark-antiquark potential at weak and strong coupling, JHEP 06 (2011) 131 [arXiv:1105.5144] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    Y. Makeenko, P. Olesen and G.W. Semenoff, Cusped SYM Wilson loop at two loops and beyond, Nucl. Phys. B 748 (2006) 170 [hep-th/0602100] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    D. Correa, J. Henn, J. Maldacena and A. Sever, An exact formula for the radiation of a moving quark in N = 4 super Yang-Mills, JHEP 06 (2012) 048 [arXiv:1202.4455] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.NorditaStockholmSweden
  2. 2.Steklov Mathematical Institute of Russ. Acad. SciMoscowRussia
  3. 3.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  4. 4.ITEPMoscowRussia

Personalised recommendations