Advertisement

Journal of High Energy Physics

, 2012:1 | Cite as

Black holes and black strings of N = 2, d = 5 supergravity in the H-FGK formalism

  • Patrick Meessen
  • Tomás Ortín
  • Jan Perz
  • C. S. Shahbazi
Article

Abstract

We study general classes and properties of extremal and non-extremal static black-hole solutions of N = 2, d = 5 supergravity coupled to vector multiplets using the recently proposed H-FGK formalism, which we also extend to static black strings. We explain how to determine the integration constants and physical parameters of the blackhole and black-string solutions. We derive some model-independent statements, including the transformation of non-extremal flow equations to the form of those for the extremal flow. We apply our methods to the construction of example solutions (among others a new extremal string solution of heterotic string theory on K 3 × S 1). In the cases where we have calculated it explicitly, the product of areas of the inner and outer horizon of a non-extremal solution coincides with the square of the moduli-independent area of the horizon of the extremal solution with the same charges.

Keywords

Black Holes in String Theory Supersymmetry and Duality Black Holes 

References

  1. [1]
    S. Ferrara, G.W. Gibbons and R. Kallosh, Black holes and critical points in moduli space, Nucl. Phys. B 500 (1997) 75 [hep-th/9702103] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    P. Meessen and T. Ortín, Non-extremal black holes of N = 2, d = 5 supergravity, Phys. Lett. B 707 (2012) 178 [arXiv:1107.5454] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A. de Antonio Martın, T. Ortín and C.S. Shahbazi, The FGK formalism for black p-branes in d dimensions, JHEP 05 (2012) 045 [arXiv:1203.0260] [INSPIRE].CrossRefGoogle Scholar
  4. [4]
    S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes, Phys. Rev. D 52 (1995) 5412 [hep-th/9508072] [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    A. Strominger, Macroscopic entropy of N = 2 extremal black holes, Phys. Lett. B 383 (1996) 39 [hep-th/9602111] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    S. Ferrara and R. Kallosh, Supersymmetry and attractors, Phys. Rev. D 54 (1996) 1514 [hep-th/9602136] [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    S. Ferrara and R. Kallosh, Universality of supersymmetric attractors, Phys. Rev. D 54 (1996) 1525 [hep-th/9603090] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    R.R. Khuri and T. Ortín, A nonsupersymmetric dyonic extreme Reissner-Nordström black hole, Phys. Lett. B 373 (1996) 56 [hep-th/9512178] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    T. Ortín, Extremality versus supersymmetry in stringy black holes, Phys. Lett. B 422 (1998) 93 [hep-th/9612142] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    C.M. Miller, K. Schalm and E.J. Weinberg, Nonextremal black holes are BPS, Phys. Rev. D 76 (2007) 044001 [hep-th/0612308] [INSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    A. Ceresole and G. Dall’Agata, Flow equations for non-BPS extremal black holes, JHEP 03 (2007) 110 [hep-th/0702088] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    G. Lopes Cardoso, A. Ceresole, G. Dall’Agata, J.M. Oberreuter and J. Perz, First-order flow equations for extremal black holes in very special geometry, JHEP 10 (2007) 063 [arXiv:0706.3373] [INSPIRE].CrossRefGoogle Scholar
  13. [13]
    B. Janssen, P. Smyth, T. Van Riet and B. Vercnocke, A first-order formalism for timelike and spacelike brane solutions, JHEP 04 (2008) 007 [arXiv:0712.2808] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J. Perz, P. Smyth, T. Van Riet and B. Vercnocke, First-order flow equations for extremal and non-extremal black holes, JHEP 03 (2009) 150 [arXiv:0810.1528] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    P. Galli, T. Ortín, J. Perz and C.S. Shahbazi, Non-extremal black holes of N = 2, d = 4 supergravity, JHEP 07 (2011) 041 [arXiv:1105.3311] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    L. Andrianopoli, R. D’Auria, E. Orazi and M. Trigiante, First order description of black holes in moduli space, JHEP 11 (2007) 032 [arXiv:0706.0712] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    G. Bossard, Y. Michel and B. Pioline, Extremal black holes, nilpotent orbits and the true fake superpotential, JHEP 01 (2010) 038 [arXiv:0908.1742] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    A. Ceresole, G. Dall Agata, S. Ferrara and A. Yeranyan, Universality of the superpotential for d = 4 extremal black holes, Nucl. Phys. B 832 (2010) 358 [arXiv:0910.2697] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    T. Mohaupt and O. Vaughan, Non-extremal black holes, harmonic functions and attractor equations, Class. Quant. Grav. 27 (2010) 235008 [arXiv:1006.3439] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    T. Mohaupt and K. Waite, Instantons, black holes and harmonic functions, JHEP 10 (2009) 058 [arXiv:0906.3451] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    P. Meessen, T. Ortín, J. Perz and C.S. Shahbazi, H-FGK formalism for black-hole solutions of N = 2, d = 4 and d = 5 supergravity, Phys. Lett. B 709 (2012) 260 [arXiv:1112.3332] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    T. Mohaupt and O. Vaughan, The Hesse potential, the c-map and black hole solutions, JHEP 07 (2012) 163 [arXiv:1112.2876] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    J.P. Gauntlett, J.B. Gutowski, C.M. Hull, S. Pakis and H.S. Reall, All supersymmetric solutions of minimal supergravity in five dimensions, Class. Quant. Grav. 20 (2003) 4587 [hep-th/0209114] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  24. [24]
    J.P. Gauntlett and J.B. Gutowski, General concentric black rings, Phys. Rev. D 71 (2005) 045002 [hep-th/0408122] [INSPIRE].MathSciNetADSGoogle Scholar
  25. [25]
    J.B. Gutowski and H.S. Reall, General supersymmetric AdS 5 black holes, JHEP 04 (2004) 048 [hep-th/0401129] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    J.B. Gutowski and W. Sabra, General supersymmetric solutions of five-dimensional supergravity, JHEP 10 (2005) 039 [hep-th/0505185] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    P. Meessen and T. Ortín, The supersymmetric configurations of N = 2, d = 4 supergravity coupled to vector supermultiplets, Nucl. Phys. B 749 (2006) 291 [hep-th/0603099] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Hübscher, P. Meessen and T. Ortín, Supersymmetric solutions of N = 2 d = 4 SUGRA: the whole ungauged shebang, Nucl. Phys. B 759 (2006) 228 [hep-th/0606281] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J. Bellorín, P. Meessen and T. Ortín, All the supersymmetric solutions of N = 1, d = 5 ungauged supergravity, JHEP 01 (2007) 020 [hep-th/0610196] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Hübscher, P. Meessen, T. Ortín and S. Vaulà, Supersymmetric N = 2 Einstein-Yang-Mills monopoles and covariant attractors, Phys. Rev. D 78 (2008) 065031 [arXiv:0712.1530] [INSPIRE].ADSGoogle Scholar
  31. [31]
    M. Hübscher, P. Meessen, T. Ortín and S. Vaulà, N = 2 Einstein-Yang-Millss BPS solutions, JHEP 09 (2008) 099 [arXiv:0806.1477] [INSPIRE].CrossRefGoogle Scholar
  32. [32]
    P. Meessen and T. Ortín, Supersymmetric solutions to gauged N = 2 d = 4 SUGRA: the full timelike shebang, Nucl. Phys. B 863 (2012) 65 [arXiv:1204.0493] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J. Bellorín and T. Ortín, Characterization of all the supersymmetric solutions of gauged N =1, d = 5 supergravity, JHEP 08 (2007) 096 [arXiv:0705.2567] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    J. Bellorín, Supersymmetric solutions of gauged five-dimensional supergravity with general matter couplings, Class. Quant. Grav. 26 (2009) 195012 [arXiv:0810.0527] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A.H. Chamseddine and W.A. Sabra, Calabi-Yau black holes and enhancement of supersymmetry in five-dimensions, Phys. Lett. B 460 (1999) 63 [hep-th/9903046] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    T. Ortín, A simple derivation of supersymmetric extremal black hole attractors, Phys. Lett. B 700 (2011) 261 [arXiv:1103.2738] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. Günaydin, G. Sierra and P.K. Townsend, Exceptional supergravity theories and the MAGIC square, Phys. Lett. B 133 (1983) 72 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M. Günaydin, G. Sierra and P.K. Townsend, The geometry of N = 2 Maxwell-Einstein supergravity and Jordan algebras, Nucl. Phys. B 242 (1984) 244 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Günaydin, G. Sierra and P.K. Townsend, Vanishing potentials in gauged N = 2 supergravity: an application of Jordan algebras, Phys. Lett. B 144 (1984) 41 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    P. Galli, K. Goldstein, S. Katmadas and J. Perz, First-order flows and stabilisation equations for non-BPS extremal black holes, JHEP 06 (2011) 070 [arXiv:1012.4020] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    R. Kallosh, N. Sivanandam and M. Soroush, The non-BPS black hole attractor equation, JHEP 03 (2006) 060 [hep-th/0602005] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    K. Goldstein, N. Iizuka, R.P. Jena and S.P. Trivedi, Non-supersymmetric attractors, Phys. Rev. D 72 (2005) 124021 [hep-th/0507096] [INSPIRE].MathSciNetADSGoogle Scholar
  43. [43]
    M. Cvetič, G.W. Gibbons and C.N. Pope, Universal area product formulae for rotating and charged black holes in four and higher dimensions, Phys. Rev. Lett. 106 (2011) 121301 [arXiv:1011.0008] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    M. Cvetič and D. Youm, Entropy of nonextreme charged rotating black holes in string theory, Phys. Rev. D 54 (1996) 2612 [hep-th/9603147] [INSPIRE].ADSGoogle Scholar
  45. [45]
    F. Larsen, A string model of black hole microstates, Phys. Rev. D 56 (1997) 1005 [hep-th/9702153] [INSPIRE].ADSGoogle Scholar
  46. [46]
    M. Cvetič and F. Larsen, General rotating black holes in string theory: grey body factors and event horizons, Phys. Rev. D 56 (1997) 4994 [hep-th/9705192] [INSPIRE].ADSGoogle Scholar
  47. [47]
    M. Cvetič and F. Larsen, Grey body factors for rotating black holes in four-dimensions, Nucl. Phys. B 506 (1997) 107 [hep-th/9706071] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    M. Cvetič and F. Larsen, Greybody factors and charges in Kerr/CFT, JHEP 09 (2009) 088 [arXiv:0908.1136] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    A. Castro and M.J. Rodriguez, Universal properties and the first law of black hole inner mechanics, Phys. Rev. D 86 (2012) 024008 [arXiv:1204.1284] [INSPIRE].ADSGoogle Scholar
  50. [50]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    G.T. Horowitz, J.M. Maldacena and A. Strominger, Nonextremal black hole microstates and U duality, Phys. Lett. B 383 (1996) 151 [hep-th/9603109] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    I. Antoniadis, S. Ferrara and T.R. Taylor, N = 2 heterotic superstring and its dual theory in five-dimensions, Nucl. Phys. B 460 (1996) 489 [hep-th/9511108] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    I. Gaida, S. Mahapatra, T. Mohaupt and W.A. Sabra, Black holes and flop transitions in M-theory on Calabi-Yau threefolds, Class. Quant. Grav. 16 (1999) 419 [hep-th/9807014] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  54. [54]
    T. Mohaupt, Topological transitions and enhancon-like geometries in Calabi-Yau compactifications of M-theory, Fortschr. Phys. 51 (2003) 787 [hep-th/0212200] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  55. [55]
    I. Gaida, N = 2 supersymmetric quantum black holes in five-dimensional heterotic string vacua, Phys. Lett. B 429 (1998) 297 [hep-th/9802140] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Patrick Meessen
    • 1
  • Tomás Ortín
    • 2
  • Jan Perz
    • 2
  • C. S. Shahbazi
    • 2
  1. 1.HEP Theory Group, Departamento de FísicaUniversidad de OviedoOviedoSpain
  2. 2.Instituto de Física Teórica UAM/CSICMadridSpain

Personalised recommendations