Journal of High Energy Physics

, 2011:140 | Cite as

Polynomials, Riemann surfaces, and reconstructing missing-energy events

Open Access


We consider the problem of reconstructing energies, momenta, and masses in collider events with missing energy, along with the complications introduced by combinatorial ambiguities and measurement errors. Typically, one reconstructs more than one value and we show how the wrong values may be correlated with the right ones. The problem has a natural formulation in terms of the theory of Riemann surfaces. We discuss examples including top quark decays in the Standard Model (relevant for top quark mass measurements and tests of spin correlation), cascade decays in models of new physics containing dark matter candidates, decays of third-generation leptoquarks in composite models of electroweak symmetry breaking, and Higgs boson decay into two τ leptons.


Hadronic Colliders Beyond Standard Model 


  1. [1]
    Beyond the Standard Model Working Group collaboration, B.C. Allanach et al., Les Houches ‘Physics at TeV colliders 2003’ Beyond the Standard Model Working Group: summary report, hep-ph/0402295 [SPIRES].
  2. [2]
    B. Webber, Mass determination in sequential particle decay chains, JHEP 09 (2009) 124 [arXiv:0907.5307] [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    D. Alves et al., Simplified models for LHC new physics searches, arXiv:1105.2838 [SPIRES].
  4. [4]
    A.J. Barr and C.G. Lester, A review of the mass measurement techniques proposed for the Large Hadron Collider, J. Phys. G 37 (2010) 123001 [arXiv:1004.2732] [SPIRES].ADSGoogle Scholar
  5. [5]
    H.-C. Cheng, Z. Han, I.-W. Kim and L.-T. Wang, Missing momentum reconstruction and spin measurements at hadron colliders, JHEP 11 (2010) 122 [arXiv:1008.0405] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    G. Moortgat-Pick, K. Rolbiecki, J. Tattersall and P. Wienemann, Probing CP-violation with and without momentum reconstruction at the LHC, JHEP 01 (2010) 004 [arXiv:0908.2631] [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    R.K. Ellis, I. Hinchliffe, M. Soldate and J.J. van der Bij, Higgs decay to τ + τ : a possible signature of intermediate mass Higgs bosons at the SSC, Nucl. Phys. B 297 (1988) 221 [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    The ATLAS collaboration, G. Aad et al., Expected performance of the ATLAS Experiment — detector, trigger and physics, arXiv:0901.0512 [SPIRES].
  9. [9]
    The ATLAS collaboration, Discovery potential of A/H → ττ → lh in ATLAS, Atlas Note ATL-PHYS-PUB-2010-011.
  10. [10]
    The CMS collaboration, Towards the search for the standard model Higgs boson produced in vector boson fusion and decaying into a tau pair in CMS with 1 inverse femtobarn: tau identification studies, CMS Note CMS-PAS-HIG-08-001.
  11. [11]
    The ATLAS collaboration, Search for neutral MSSM Higgs bosons decaying to τ + τ pairs in proton-proton collisions at sqrts =7TeV with the ATLAS Experiment, Atlas Note ATLAS-CONF-2011-024.
  12. [12]
    The CMS collaboration, Search for neutral Higgs boson production and decay to tau pairs, CMS Note CMS-PAS-HIG-10-002.
  13. [13]
    CDF collaboration, T. Aaltonen et al., Invariant mass distribution of jet pairs produced in association with a W boson in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 106 (2011) 171801 [arXiv:1104.0699] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    Y. Bai and Z. Han, Top-antitop and top-top resonances in the dilepton channel at the CERN LHC, JHEP 04 (2009) 056 [arXiv:0809.4487] [SPIRES].ADSCrossRefGoogle Scholar
  15. [15]
    H.-C. Cheng, D. Engelhardt, J.F. Gunion, Z. Han and B. McElrath, Accurate mass determinations in decay chains with missing energy, Phys. Rev. Lett. 100 (2008) 252001 [arXiv:0802.4290] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    M.M. Nojiri, G. Polesello and D.R. Tovey, Proposal for a new reconstruction technique for SUSY processes at the LHC, hep-ph/0312317 [SPIRES].
  17. [17]
    K. Kawagoe, M.M. Nojiri and G. Polesello, A new SUSY mass reconstruction method at the CERN LHC, Phys. Rev. D 71 (2005) 035008 [hep-ph/0410160] [SPIRES].ADSGoogle Scholar
  18. [18]
    H.-C. Cheng, J.F. Gunion, Z. Han and B. McElrath, Accurate mass determinations in decay chains with missing energy: II, Phys. Rev. D 80 (2009) 035020 [arXiv:0905.1344] [SPIRES].ADSGoogle Scholar
  19. [19]
    K. Melnikov and M. Schulze, Top quark spin correlations at the Tevatron and the LHC, Phys. Lett. B 700 (2011) 17 [arXiv:1103.2122] [SPIRES].ADSGoogle Scholar
  20. [20]
    L. Sonnenschein, Analytical solution of \( t\bar{t} \) dilepton equations, Phys. Rev. D 73 (2006) 054015 [hep-ph/0603011] [SPIRES].ADSGoogle Scholar
  21. [21]
    B. Gripaios, A. Papaefstathiou, K. Sakurai and B. Webber, Searching for third-generation composite leptoquarks at the LHC, JHEP 01 (2011) 156 [arXiv:1010.3962] [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    B. Gripaios, Composite leptoquarks at the LHC, JHEP 02 (2010) 045 [arXiv:0910.1789] [SPIRES].ADSCrossRefGoogle Scholar
  23. [23]
    M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    S. Gieseke et al., HERWIG++ 2.5 release note, arXiv:1102.1672 [SPIRES].
  25. [25]
    D. Grellscheid and P. Richardson, Simulation of tau decays in the HERWIG++ event generator, arXiv:0710.1951 [SPIRES].
  26. [26]
    S. Ovyn, X. Rouby and V. Lemaitre, Delphes, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [SPIRES].

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.CERN PH-THGeneva 23Switzerland
  2. 2.Cavendish LaboratoryUniversity of CambridgeCambridgeU.K.
  3. 3.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeU.K.

Personalised recommendations