Advertisement

Journal of High Energy Physics

, 2011:118 | Cite as

Vortices on orbifolds

  • Taro Kimura
  • Muneto Nitta
Article

Abstract

The Abelian and non-Abelian vortices on orbifolds are investigated based on the moduli matrix approach, which is a powerful method to deal with the BPS equation. The moduli space and the vortex collision are discussed through the moduli matrix as well as the regular space. It is also shown that a quiver structure is found in the Kähler quotient, and a half of ADHM is obtained for the vortex theory on the orbifolds as the case before orbifolding.

Keywords

Field Theories in Lower Dimensions Solitons Monopoles and Instantons 

References

  1. [1]
    A.A. Abrikosov, On the magnetic properties of superconductors of the second group, Sov. Phys. JETP 5 (1957) 1174. [Zh.Eksp.Teor.Fiz.32:1442–1452,1957],Google Scholar
  2. [2]
    H.B. Nielsen and P. Olesen, Vortex-line models for dual strings, Nucl. Phys. B 61 (1973) 45 [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    E.B. Bogomolny, Stability of classical solutions, Sov. J. Nucl. Phys. 24 (1976) 449. [Yad.Fiz.24:861–870,1976],Google Scholar
  4. [4]
    M.K. Prasad and C.M. Sommerfield, An exact classical solution for the ’t Hooft monopole and the Julia-Zee Dyon, Phys. Rev. Lett. 35 (1975) 760 [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    E. Witten and D.I. Olive, Supersymmetry algebras that include topological charges, Phys. Lett. B 78 (1978) 97 [SPIRES].ADSGoogle Scholar
  6. [6]
    N. Manton and P. Sutcliffe, Topological solitons, Cambridge University Press, Cambridge U.K. (2007).Google Scholar
  7. [7]
    A. Hanany and D. Tong, Vortices, instantons and branes, JHEP 07 (2003) 037 [hep-th/0306150] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    R. Auzzi, S. Bolognesi, J. Evslin, K. Konishi and A. Yung, Nonabelian superconductors: vortices and confinement in N = 2 SQCD, Nucl. Phys. B 673 (2003) 187 [hep-th/0307287] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    M. Shifman and A. Yung, Non-abelian string junctions as confined monopoles, Phys. Rev. D 70 (2004) 045004 [hep-th/0403149] [SPIRES].ADSMathSciNetGoogle Scholar
  10. [10]
    A. Hanany and D. Tong, Vortex strings and four-dimensional gauge dynamics, JHEP 04 (2004) 066 [hep-th/0403158] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    D. Tong, Monopoles in the Higgs phase, Phys. Rev. D 69 (2004) 065003 [hep-th/0307302] [SPIRES].ADSGoogle Scholar
  12. [12]
    M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Instantons in the Higgs phase, Phys. Rev. D 72 (2005) 025011 [hep-th/0412048] [SPIRES].ADSMathSciNetGoogle Scholar
  13. [13]
    M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Moduli space of non-Abelian vortices, Phys. Rev. Lett. 96 (2006) 161601 [hep-th/0511088] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Solitons in the Higgs phase: the moduli matrix approach, J. Phys. A 39 (2006) R315 [hep-th/0602170] [SPIRES].ADSMathSciNetGoogle Scholar
  15. [15]
    M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Manifestly supersymmetric effective Lagrangians on BPS solitons, Phys. Rev. D 73 (2006) 125008 [hep-th/0602289] [SPIRES].ADSMathSciNetGoogle Scholar
  16. [16]
    M. Eto et al., Non-Abelian vortices of higher winding numbers, Phys. Rev. D 74 (2006) 065021 [hep-th/0607070] [SPIRES].ADSMathSciNetGoogle Scholar
  17. [17]
    M. Eto et al., Universal reconnection of non-Abelian cosmic strings, Phys. Rev. Lett. 98 (2007) 091602 [hep-th/0609214] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    T. Fujimori, G. Marmorini, M. Nitta, K. Ohashi and N. Sakai, The moduli space metric for well-separated non-abelian vortices, Phys. Rev. D 82 (2010) 065005 [arXiv:1002.4580] [SPIRES].ADSGoogle Scholar
  19. [19]
    M. Eto, T. Fujimori, M. Nitta, K. Ohashi and N. Sakai, Dynamics of non-abelian vortices, arXiv:1105.1547 [SPIRES].
  20. [20]
    T. Dimofte, S. Gukov and L. Hollands, Vortex counting and Lagrangian 3-manifolds, arXiv:1006.0977 [SPIRES].
  21. [21]
    Y. Yoshida, Localization of vortex partition functions in \( \mathcal{N} = \left( {2,2} \right) \) super Yang-Mills theory, arXiv:1101.0872 [SPIRES].
  22. [22]
    G. Bonelli, A. Tanzini and J. Zhao, Vertices, vortices & interacting surface operators, arXiv:1102.0184 [SPIRES].
  23. [23]
    G. Bonelli, A. Tanzini and J. Zhao, The Liouville side of the Vortex, arXiv:1107.2787 [SPIRES].
  24. [24]
    A. Miyake, K. Ohta and N. Sakai, Volume of moduli space of vortex equations and localization, arXiv:1105.2087 [SPIRES].
  25. [25]
    M. Eto et al., Non-Abelian vortices on cylinder: Duality between vortices and walls, Phys. Rev. D 73 (2006) 085008 [hep-th/0601181] [SPIRES].ADSMathSciNetGoogle Scholar
  26. [26]
    M. Eto et al., Statistical mechanics of vortices from D-branes and T-duality, Nucl. Phys. B 788 (2008) 120 [hep-th/0703197] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  27. [27]
    G.S. Lozano, D. Marques and F.A. Schaposnik, Non-abelian vortices on the torus, JHEP 09 (2007) 095 [arXiv:0708.2386] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  28. [28]
    A.D. Popov, Non-abelian vortices on Riemann surfaces: an integrable case, Lett. Math. Phys. 84 (2008) 139 [arXiv:0801.0808] [SPIRES].CrossRefMATHADSMathSciNetGoogle Scholar
  29. [29]
    J.M. Baptista, Non-abelian vortices on compact Riemann surfaces, Commun. Math. Phys. 291 (2009) 799 [arXiv:0810.3220] [SPIRES].CrossRefMATHADSMathSciNetGoogle Scholar
  30. [30]
    J.M. Baptista, On the L 2 -metric of vortex moduli spaces, Nucl. Phys. B 844 (2011) 308 [arXiv:1003.1296] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  31. [31]
    N.S. Manton and N.A. Rink, Geometry and energy of non-abelian vortices, J. Math. Phys. 52 (2011) 043511 [arXiv:1012.3014] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    N.S. Manton and N. Sakai, Maximally non-abelian vortices from self-dual Yang-Mills fields, Phys. Lett. B 687 (2010) 395 [arXiv:1001.5236] [SPIRES].ADSMathSciNetGoogle Scholar
  33. [33]
    A.D. Popov, Integrability of vortex equations on Riemann surfaces, Nucl. Phys. B 821 (2009) 452 [arXiv:0712.1756] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    S. Krusch and J.M. Speight, Exact moduli space metrics for hyperbolic vortices, J. Math. Phys. 51 (2010) 022304 [arXiv:0906.2007] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  35. [35]
    N.S. Manton and N.A. Rink, Vortices on hyperbolic surfaces, J. Phys. A 43 (2010) 434024 [arXiv:0912.2058] [SPIRES].ADSMathSciNetGoogle Scholar
  36. [36]
    P.B. Kronheimer, The Construction of ALE spaces as hyperKähler quotients, J. Diff. Geom. 29 (1989) 665 [SPIRES].MATHMathSciNetGoogle Scholar
  37. [37]
    H. Nakajima, Moduli spaces of anti-self-dual connections on ALE gravitational instantons, Invent. Math. 102 (1990) 267.CrossRefMATHADSMathSciNetGoogle Scholar
  38. [38]
    P.B. Kronheimer and H. Nakajima, Yang-Mills instantons on ALE gravitational instantons, Math. Ann. 288 (1990) 263.CrossRefMATHMathSciNetGoogle Scholar
  39. [39]
    F. Fucito, J.F. Morales and R. Poghossian, Multi instanton calculus on ALE spaces, Nucl. Phys. B 703 (2004) 518 [hep-th/0406243] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  40. [40]
    T. Kimura, Matrix model from N = 2 orbifold partition function, JHEP 09 (2011) 015 [arXiv:1105.6091] [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [SPIRES].CrossRefMATHADSMathSciNetGoogle Scholar
  42. [42]
    V. Belavin and B. Feigin, Super Liouville conformal blocks from N = 2 SU(2) quiver gauge theories, JHEP 07 (2011) 079 [arXiv:1105.5800] [SPIRES].CrossRefADSGoogle Scholar
  43. [43]
    T. Nishioka and Y. Tachikawa, Para-Liouville/Toda central charges from M5-branes, Phys. Rev. D 84 (2011) 046009 [arXiv:1106.1172] [SPIRES].ADSGoogle Scholar
  44. [44]
    G. Bonelli, K. Maruyoshi and A. Tanzini, Instantons on ALE spaces and super Liouville conformal field theories, JHEP 08 (2011) 056 [arXiv:1106.2505] [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    A. Belavin, V. Belavin and M. Bershtein, Instantons and 2 d superconformal field theory, arXiv:1106.4001 [SPIRES].
  46. [46]
    G. Bonelli, K. Maruyoshi and A. Tanzini, Gauge theories on ALE space and super Liouville correlation functions, arXiv:1107.4609 [SPIRES].
  47. [47]
    Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, All exact solutions of a 1/4 Bogomol’nyi-Prasad-Sommerfield equation, Phys. Rev. D 71 (2005) 065018 [hep-th/0405129] [SPIRES].ADSMathSciNetGoogle Scholar
  48. [48]
    M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167 [SPIRES].
  49. [49]
    B. Collie and D. Tong, The partonic nature of instantons, JHEP 08 (2009) 006 [arXiv:0905.2267] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  50. [50]
    M. Eto et al., Fractional vortices and lumps, Phys. Rev. D 80 (2009) 045018 [arXiv:0905.3540] [SPIRES].ADSGoogle Scholar
  51. [51]
    M. Eto, T. Fujimori, S.B. Gudnason, M. Nitta and K. Ohashi, SO and USp Kähler and Hyper-Kähler quotients and lumps, Nucl. Phys. B 815 (2009) 495 [arXiv:0809.2014] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  52. [52]
    M. Eto et al., Group theory of non-abelian vortices, JHEP 11 (2010) 042 [arXiv:1009.4794] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  53. [53]
    A. Adams, J. Polchinski and E. Silverstein, Don’t panic! Closed string tachyons in ALE space-times, JHEP 10 (2001) 029 [hep-th/0108075] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  54. [54]
    C.-S. Lin and Y. Yang, Non-Abelian multiple vortices in supersymmetric field theory, Commun. Math. Phys. 304 (2011) 433 [SPIRES].CrossRefMATHADSMathSciNetGoogle Scholar
  55. [55]
    C.-S. Lin and Y. Yang, Sharp existence and uniqueness theorems for non-Abelian multiple vortex solutions, Nucl. Phys. B 846 (2011) 650 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  56. [56]
    E.H. Lieb and Y. Yang, Non-abelian vortices in supersymmetric gauge field theory via direct methods, arXiv:1106.1626 [SPIRES].
  57. [57]
    R. Auzzi, M. Shifman and A. Yung, Composite non-abelian flux tubes in N = 2 SQCD, Phys. Rev. D 73 (2006) 105012 [hep-th/0511150]. [Erratum-ibid.D76:109901,2007],ADSMathSciNetGoogle Scholar
  58. [58]
    K. Arthur and J. Burzlaff, Existence theorems for pi/n vortex scattering, Lett. Math. Phys. 36 (1996) 311 [hep-th/9503010] [SPIRES].CrossRefMATHADSMathSciNetGoogle Scholar
  59. [59]
    R. MacKenzie, Remarks on gauge vortex scattering, Phys. Lett. B 352 (1995) 96 [hep-th/9503044] [SPIRES].ADSMathSciNetGoogle Scholar
  60. [60]
    T. Vachaspati and A. Achucarro, Semilocal cosmic strings, Phys. Rev. D 44 (1991) 3067 [SPIRES].ADSMathSciNetGoogle Scholar
  61. [61]
    A. Achucarro and T. Vachaspati, Semilocal and electroweak strings, Phys. Rept. 327 (2000) 347 [hep-ph/9904229]. [Phys.Rept.327:427,2000],CrossRefADSGoogle Scholar
  62. [62]
    M. Shifman and A. Yung, Non-Abelian semilocal strings in N = 2 supersymmetric QCD, Phys. Rev. D 73 (2006) 125012 [hep-th/0603134] [SPIRES].ADSGoogle Scholar
  63. [63]
    M. Eto et al., On the moduli space of semilocal strings and lumps, Phys. Rev. D 76 (2007) 105002 [arXiv:0704.2218] [SPIRES].ADSMathSciNetGoogle Scholar
  64. [64]
    M. Eto et al., Constructing non-abelian vortices with arbitrary gauge groups, Phys. Lett. B 669 (2008) 98 [arXiv:0802.1020] [SPIRES].ADSMathSciNetGoogle Scholar
  65. [65]
    M. Eto et al., Non-abelian vortices in SO(N) and USp(N) gauge theories, JHEP 06 (2009) 004 [arXiv:0903.4471] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  66. [66]
    T. Fujimori, M. Nitta, K. Ohta, N. Sakai and M. Yamazaki, Intersecting solitons, amoeba and tropical geometry, Phys. Rev. D 78 (2008) 105004 [arXiv:0805.1194] [SPIRES].ADSMathSciNetGoogle Scholar
  67. [67]
    H. Kanno and Y. Tachikawa, Instanton counting with a surface operator and the chain-saw quiver, JHEP 06 (2011) 119 [arXiv:1105.0357] [SPIRES].CrossRefADSGoogle Scholar
  68. [68]
    M.R. Dhanak, Stability of a regular polygon of finite vortices, J. Fluid Mech. 234 (1992) 297.CrossRefMATHADSMathSciNetGoogle Scholar
  69. [69]
    H. Aref, P.K. Newton, M.A. Stremler, T. Tokieda, and D.L. Vainchtein, Vortex crystals, Adv. Appl. Mech. 39 (2003) 1.CrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of Basic ScienceUniversity of TokyoTokyoJapan
  2. 2.Mathematical Physics Lab.RIKEN Nishina CenterSaitamaJapan
  3. 3.Department of Physics, and Research and Education Center for Natural SciencesKeio UniversityKanagawaJapan

Personalised recommendations