Journal of High Energy Physics

, 2011:76 | Cite as

On topological field theory representation of higher analogs of classical special functions



Looking for a quantum field theory model of Archimedean algebraic geometry a class of infinite-dimensional integral representations of classical special functions was introduced. Precisely the special functions such as Whittaker functions and Γ-function were identified with correlation functions in topological field theories on a two-dimensional disk. Mirror symmetry of the underlying topological field theory leads to a dual finite-dimensional integral representations reproducing classical integral representations for the corresponding special functions. The mirror symmetry interchanging infinite- and finite-dimensional integral representations provides an incarnation of the local Archimedean Langlands duality on the level of classical special functions.

In this note we provide some directions to higher-dimensional generalizations of our previous results. In the first part we consider topological field theory representations of multiple local L-factors introduced by Kurokawa and expressed through multiple Barnes’s Γ-functions. In the second part we are dealing with generalizations based on consideration of topological Yang-Mills theories on non-compact four-dimensional manifolds. Presumably, in analogy with the mirror duality in two-dimensions, S-dual description should be instrumental for deriving integral representations for a particular class of quantum field theory correlation functions and thus providing a new interesting class of special functions supplied with canonical integral representations.


Topological Field Theories Integrable Field Theories 


  1. [1]
    M. Aganagic and C. Vafa, Perturbative derivation of mirror symmetry, hep-th/0209138 [SPIRES].
  2. [2]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [SPIRES].CrossRefMATHADSMathSciNetGoogle Scholar
  3. [3]
    D.M. Austin and P.J. Braam, Morse-Bott theory and equivariant cohomology, in The Floer Memorial Volume, H. Hofer et al. eds., Springer, U.S.A. (1995).Google Scholar
  4. [4]
    E.W. Barnes, On the theory of the multiple gamma functions, Trans. Cambridge Philos. Soc. 19 (1904) 374.Google Scholar
  5. [5]
    A. Braverman and P. Etingof, Instanton counting via affine Lie algebras. II. From Whittaker vectors to the Seiberg-Witten prepotential, math/0409441.
  6. [6]
    D. Bump, Automorphic forms and representations, Cambridge University Press, Cambridge U.K. (1998).Google Scholar
  7. [7]
    R.L. Cohen, J.D.S. Jones and G.B. Segal, Floer’s infinite dimensional Morse theory and homotopy theory, in The Floer Memorial Volume, H. Hofer et al. eds., Springer, U.S.A. (1995).Google Scholar
  8. [8]
    F.A. Dolan and H. Osborn, Applications of the superconformal index for protected operators and q-hypergeometric identities to N = 1 dual theories, Nucl. Phys. B 818 (2009) 137 [arXiv:0801.4947] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    S.K. Donaldson and P.B. Kronheimer, The geometry of four-manifolds, ClarendonPress, Oxford U.K. (1990).MATHGoogle Scholar
  10. [10]
    J.J. Duistermaat and G.J. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math. 69 (1982) 259. CrossRefMATHADSMathSciNetGoogle Scholar
  11. [11]
    A. Floer, An instanton invariants for 3-manifolds, Commun. Math. Phys. 118 (1988) 215.CrossRefMATHADSMathSciNetGoogle Scholar
  12. [12]
    D. Gaiotto and E. Witten, Supersymmetric boundary conditions in N = 4 super Yang-Mills theory, arXiv:0804.2902 [SPIRES].
  13. [13]
    A. Gerasimov, S. Kharchev and D. Lebedev, Representation theory and quantum inverse scattering method: the open Toda chain and the hyperbolic Sutherland model, Int. Math. Res. Not. 17 (2004) 823 [math/0204206].CrossRefMathSciNetGoogle Scholar
  14. [14]
    A. Gerasimov, S. Kharchev, D. Lebedev and S. Oblezin, On a Gauss-Givental representation of quantum Toda chain wave function, Int. Math. Res. Not. 2006 (2006) 1 [math/0505310].MathSciNetGoogle Scholar
  15. [15]
    A. Gerasimov, D. Lebedev and S. Oblezin, On q-deformed \( \mathfrak{g}{\mathfrak{l}_{\ell + 1}} \) -Whittaker functions I, Commun. Math. Phys. 294 (2010) 97 [arXiv:0803.0145].CrossRefMATHMathSciNetGoogle Scholar
  16. [16]
    A. Gerasimov, D. Lebedev and S. Oblezin, On q-deformed \( \mathfrak{g}{\mathfrak{l}_{\ell + 1}} \) -Whittaker functions II, Commun. Math. Phys. 294 (2010) 121 [arXiv:0803.0970].CrossRefMATHMathSciNetGoogle Scholar
  17. [17]
    A. Gerasimov, D. Lebedev and S. Oblezin, On q-deformed \( \mathfrak{g}{\mathfrak{l}_{\ell + 1}} \) -Whittaker functions III, Lett. Math. Phys. 294 (2010) 1 [arXiv:0803.3754].Google Scholar
  18. [18]
    A. Gerasimov, D. Lebedev and S. Oblezin, Archimedean L-factors and topological field theories I, Commun. Number Theor. Phys. 5 (2011) [arXiv:0906.1065] [SPIRES].
  19. [19]
    A. Gerasimov, D. Lebedev and S. Oblezin, Archimedean L-factors and Topological Field Theories II, Commun. Number Theor. Phys. 5 (2011) arXiv:0909.2016 [SPIRES].
  20. [20]
    A. Gerasimov, D. Lebedev and S. Oblezin, Parabolic W hittaker functions and topological field theories I, Commun. Number Theor. Phys. 5 (2011) [arXiv:1002.2622] [SPIRES].
  21. [21]
    A. Gerasimov, D. Lebedev and S. Oblezin, From Archimedean L-factors to topological field theories, Lett. Math. Phys. 96 (2011) 285 [SPIRES].CrossRefMATHADSMathSciNetGoogle Scholar
  22. [22]
    A. Gerasimov, A quantum field theory model of archimedean geometry, talk given at Rencontres Itzykson 2010: New trends in quantum integrability, June 21–23, IPhT Saclay, France (2010).Google Scholar
  23. [23]
    A.A. Gerasimov and D.R. Lebedev, Representation theory over tropical semifield and Langlands correspondence, arXiv:1011.2462.
  24. [24]
    A.A. Gerasimov and S.L. Shatashvili, Higgs bundles, gauge theories and quantum groups, Commun. Math. Phys. 277 (2008) 323 [hep-th/0609024] [SPIRES].CrossRefMATHADSMathSciNetGoogle Scholar
  25. [25]
    A.A. Gerasimov and S.L. Shatashvili, Two-dimensional gauge theories and quantum integrable systems, in From Hodge theory to integrability and TQFT: tt * -geometry, R. Donagi and K. Wendland eds., American mathematical Society, U.S.A. (2007), arXiv:0711.1472 [SPIRES].Google Scholar
  26. [26]
    A. Givental, Homological geometry I. Projective hypersurfaces, Sel. Math. New Ser. 1 (1995) 325. CrossRefMATHMathSciNetGoogle Scholar
  27. [27]
    A. Givental, Equivariant Gromov-Witten invariants, Int. Math. Res. Not. 13 (1996) 613 [alg-geom/9603021].CrossRefMathSciNetGoogle Scholar
  28. [28]
    A. Givental, Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture, in Topics in singularity theory, A. Khovanskii et al. eds., American Mathematical Society, U.S.A. (1997), alg-geom/9612001. Google Scholar
  29. [29]
    A. Jaffe and C. Taubes, Vortices and monopoles, Springer, USA (1980).MATHGoogle Scholar
  30. [30]
    S. Kharchev and D. Lebedev, Eigenfunctions of GL (N, R) Toda chain: The Mellin-Barnes representation, Pisma Zh. Eksp. Teor. Fiz. 71 (2000) 338 [hep-th/0004065] [SPIRES].Google Scholar
  31. [31]
    J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [SPIRES].CrossRefMATHADSMathSciNetGoogle Scholar
  32. [32]
    M. Kontsevich, Enumeration of rational curves via torus actions, hep-th/9405035 [SPIRES].
  33. [33]
    N. Kurokawa, Multiple sine functions and Selberg zeta functions, Proc. Japan Acad. 67A (1991) 61.MathSciNetGoogle Scholar
  34. [34]
    N. Kurokawa, Multiple zeta functions: an example, Adv. Stud. Pure Math. 21 (1992) 219.MathSciNetGoogle Scholar
  35. [35]
    J. Bernstein and S. Gelbart, An introduction to the Langlands program, lectures presented at the Hebrew University of Jerusalem, Jerusalem, March 12–16 (2001), Springer, U.S.A. (2003).Google Scholar
  36. [36]
    A. Lossev, N. Nekrasov and S.L. Shatashvili, Testing Seiberg-W itten solution, hep-th/9801061 [SPIRES].
  37. [37]
    Yu.I. Manin, Lectures on zeta functions and motives (according to Deninger and Kurokawa), Astérisque 228 (1995) 121.MathSciNetGoogle Scholar
  38. [38]
    G.W. Moore, N. Nekrasov and S. Shatashvili, Integrating over Higgs branches, Commun. Math. Phys. 209 (2000) 97 [hep-th/9712241] [SPIRES].CrossRefMATHADSMathSciNetGoogle Scholar
  39. [39]
    H. Nakajima and K. Yoshioka, Lectures on instanton counting, math/0311058.
  40. [40]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [SPIRES].MathSciNetGoogle Scholar
  41. [41]
    N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, hep-th/0306238 [SPIRES].
  42. [42]
    N.A. Nekrasov and S.L. Shatashvili, Quantization of integrable systems and four dimensional gauge theories, arXiv:0908.4052 [SPIRES].
  43. [43]
    N. Nekrasov and E. Witten, The ω deformation, branes, integrability and Liouville theory, JHEP 09 (2010) 092 [arXiv:1002.0888] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  44. [44]
    N. Seiberg and E. Witten, Monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [SPIRES].CrossRefMATHADSMathSciNetGoogle Scholar
  45. [45]
    C. Romelsberger, Counting chiral primaries in N = 1, D = 4 superconformal field theories, Nucl. Phys. B 747 (2006) 329 [hep-th/0510060] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  46. [46]
    C. Romelsberger, Calculating the superconformal index and Seiberg duality, arXiv:0707.3702 [SPIRES].
  47. [47]
    S. Shadchin, On F-term contribution to effective action, JHEP 08 (2007) 052 [hep-th/0611278] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  48. [48]
    V.P. Spiridonov, Essays on the theory of elliptic hypergeometric functions, Russian Math. Surveys 63 (2008) 405 [arXiv:0805.3135].CrossRefMATHADSMathSciNetGoogle Scholar
  49. [49]
    V.P. Spiridonov and G.S. Vartanov, Elliptic hypergeometry of supersymmetric dualities, Commun. Math. Phys. 304 (2011) 797 [arXiv:0910.5944] [SPIRES].CrossRefMATHADSMathSciNetGoogle Scholar
  50. [50]
    E. Witten, Topological quantum field theory, Commun. Math. Phys. 117 (1988) 353 [SPIRES].CrossRefMATHADSMathSciNetGoogle Scholar
  51. [51]
    E. Witten, Monopoles and four manifolds, Math. Res. Lett. 1 (1994) 769 [hep-th/9411102] [SPIRES].MATHMathSciNetGoogle Scholar
  52. [52]
    E. Witten, A new look at the path integral of quantum mechanics, arXiv:1009.6032 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Institute for Theoretical and Experimental PhysicsMoscowRussia
  2. 2.School of MathematicsTrinity College DublinDublin 2Ireland
  3. 3.Hamilton Mathematics InstituteTrinity College DublinDublin 2Ireland

Personalised recommendations