Advertisement

Journal of High Energy Physics

, 2011:5 | Cite as

Quantum moduli space of Chern-Simons quivers, wrapped D6-branes and AdS 4 /CFT 3

  • Francesco Benini
  • Cyril Closset
  • Stefano Cremonesi
Article

Abstract

We study the quantum moduli space of \( \mathcal{N} = 2 \) Chern-Simons quivers with generic ranks and CS levels, proving along the way exact formulas for the charges of bare monopole operators. We then derive \( \mathcal{N} = 2 \) Chern-Simons quiver theories dual to \( Ad{S_4} \times {Y^{p,q}}\left( {\mathbb{C}{\mathbb{P}^2}} \right) \) M-theory backgrounds, for the whole family of Sasaki-Einstein seven-manifolds and for any value of the torsion G 4 flux. The derivation of the gauge theories relies on the reduction to type IIA string theory, in which M2-branes become D2-branes while the conical geometry maps to RR flux and D6-branes wrapped on compact four-cycles. M5-branes on torsion cycles map to flux and wrapped D4-branes. The moduli space of the quiver is shown to contain the corresponding CY4 cone and all its crepant resolutions.

Keywords

AdS-CFT Correspondence Chern-Simons Theories M-Theory Solitons Monopoles and Instantons 

References

  1. [1]
    J. Bagger and N. Lambert, Modeling multiple M2’s, Phys. Rev. D 75 (2007) 045020 [hep-th/0611108] [SPIRES].ADSMathSciNetGoogle Scholar
  2. [2]
    A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [SPIRES].ADSMathSciNetGoogle Scholar
  4. [4]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, \( \mathcal{N} = 6 \) superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  5. [5]
    M. Benna, I. Klebanov, T. Klose and M. Smedback, Superconformal Chern-Simons theories and AdS 4 /CFT 3 correspondence, JHEP 09 (2008) 072 [arXiv:0806.1519] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  6. [6]
    Y. Imamura and K. Kimura, On the moduli space of elliptic Maxwell-Chern-Simons theories, Prog. Theor. Phys. 120 (2008) 509 [arXiv:0806.3727] [SPIRES].CrossRefMATHADSGoogle Scholar
  7. [7]
    O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    D.L. Jafferis and A. Tomasiello, A simple class of \( \mathcal{N} = 3 \) gauge/gravity duals, JHEP 10 (2008) 101 [arXiv:0808.0864] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    A. Hanany and A. Zaffaroni, Tilings, Chern-Simons theories and M2 branes, JHEP 10 (2008) 111 [arXiv:0808.1244] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    A. Hanany, D. Vegh and A. Zaffaroni, Brane tilings and M2 branes, JHEP 03 (2009) 012 [arXiv:0809.1440] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    I. Klebanov, T. Klose and A. Murugan, AdS 4 /CFT 3 — squashed, stretched and warped, JHEP 03 (2009) 140 [arXiv:0809.3773] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    M. Aganagic, A stringy origin of M2 brane Chern-Simons theories, Nucl. Phys. B 835 (2010) 1 [arXiv:0905.3415] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    D. Martelli and J. Sparks, AdS 4 /CFT 3 duals from M 2-branes at hypersurface singularities and their deformations, JHEP 12 (2009) 017 [arXiv:0909.2036] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [SPIRES].ADSMathSciNetGoogle Scholar
  15. [15]
    Y. Imamura and S. Yokoyama, \( \mathcal{N} = 4 \) Chern-Simons theories and wrapped M-branes in their gravity duals, Prog. Theor. Phys. 121 (2009) 915 [arXiv:0812.1331] [SPIRES].CrossRefMATHADSGoogle Scholar
  16. [16]
    D. Gaiotto and D.L. Jafferis, Notes on adding D 6 branes wrapping RP3 in AdS 4× CP 3, arXiv:0903.2175 [SPIRES].
  17. [17]
    S. Hohenegger and I. Kirsch, A note on the holography of Chern-Simons matter theories with flavour, JHEP 04 (2009) 129 [arXiv:0903.1730] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    Y. Hikida, W. Li and T. Takayanagi, ABJM with flavors and FQHE, JHEP 07 (2009) 065 [arXiv:0903.2194] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  19. [19]
    F. Benini, C. Closset and S. Cremonesi, Chiral flavors and M 2-branes at toric CY 4 singularities, JHEP 02 (2010) 036 [arXiv:0911.4127] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  20. [20]
    D.L. Jafferis, Quantum corrections to \( \mathcal{N} = 2 \) Chern-Simons theories with flavor and their AdS4 duals, arXiv: 0911.4324 [SPIRES].
  21. [21]
    J.P. Gauntlett, D. Martelli, J.F. Sparks and D. Waldram, A new infinite class of Sasaki-Einstein manifolds, Adv. Theor. Math. Phys. 8 (2006) 987 [hep-th/0403038] [SPIRES].MathSciNetGoogle Scholar
  22. [22]
    D. Martelli and J. Sparks, Notes on toric Sasaki-Einstein seven-manifolds and AdS 4 /CFT 3 , JHEP 11 (2008) 016 [arXiv:0808.0904] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  23. [23]
    F. Benini, C. Closset and S. Cremonesi, D 6-branes wrapped on toric del Pezzo surfaces and AdS 4 /CFT 3, to appear.Google Scholar
  24. [24]
    D. Martelli and J. Sparks, Moduli spaces of Chern-Simons quiver gauge theories and AdS 4 /CFT 3, Phys. Rev. D 78 (2008) 126005 [arXiv:0808.0912] [SPIRES].ADSMathSciNetGoogle Scholar
  25. [25]
    N. Benishti, Y.-H. He and J. Sparks, (Un)Higgsing the M2-brane, JHEP 01 (2010) 067 [arXiv:0909.4557] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  26. [26]
    A. Kapustin, Wilson-’t Hooft operators in four-dimensional gauge theories and S-duality, Phys. Rev. D 74 (2006) 025005 [hep-th/0501015] [SPIRES].ADSMathSciNetGoogle Scholar
  27. [27]
    A. Kapustin and E. Witten, Electric-magnetic duality and the geometric Langlands program, hep-th/0604151 [SPIRES].
  28. [28]
    V. Borokhov, A. Kapustin and X.-k. Wu, Topological disorder operators in three-dimensional conformal field theory, JHEP 11 (2002) 049 [hep-th/0206054] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  29. [29]
    V. Borokhov, A. Kapustin and X.-k. Wu, Monopole operators and mirror symmetry in three dimensions, JHEP 12 (2002) 044 [hep-th/0207074] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  30. [30]
    V. Borokhov, Monopole operators in three-dimensional \( \mathcal{N} = 4 \) SYM and mirror symmetry, JHEP 03 (2004) 008 [hep-th/0310254] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  31. [31]
    S. Kim, The complete superconformal index for XXX Chern-Simons theory, Nucl. Phys. B 821 (2009) 241 [arXiv:0903.4172] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    M.K. Benna, I.R. Klebanov and T. Klose, Charges of monopole operators in Chern-Simons Yang-Mills theory, JHEP 01 (2010) 110 [arXiv:0906.3008] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  33. [33]
    D. Bashkirov and A. Kapustin, Supersymmetry enhancement by monopole operators, JHEP 05 (2011) 015 [arXiv:1007.4861] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  34. [34]
    H. Samtleben and R. Wimmer, XXX superspace constraints, SUSY enhancement and monopole operators, JHEP 10 (2010) 080 [arXiv:1008.2739] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  35. [35]
    D.L. Jafferis, The exact superconformal R-symmetry extremizes Z, arXiv:1012.3210 [SPIRES].
  36. [36]
    D. Gaiotto and E. Witten, S-duality of boundary conditions in \( \mathcal{N} = 4 \) super Yang-Mills theory, arXiv:0807.3720 [SPIRES].
  37. [37]
    P. Goddard, J. Nuyts and D.I. Olive, Gauge theories and magnetic charge, Nucl. Phys. B 125 (1977) 1 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  38. [38]
    Y. Imamura and S. Yokoyama, Index for three dimensional superconformal field theories with general R-charge assignments, JHEP 04 (2011) 007 [arXiv:1101.0557] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  39. [39]
    A.J. Niemi and G.W. Semenoff, Axial anomaly induced fermion fractionization and effective gauge theory actions in odd dimensional space-times, Phys. Rev. Lett. 51 (1983) 2077 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  40. [40]
    A.N. Redlich, Gauge noninvariance and parity nonconservation of three-dimensional fermions, Phys. Rev. Lett. 52 (1984) 18 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  41. [41]
    A.N. Redlich, Parity violation and gauge noninvariance of the effective gauge field action in three-dimensions, Phys. Rev. D 29 (1984) 2366 [SPIRES].ADSMathSciNetGoogle Scholar
  42. [42]
    S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS operators in gauge theories: quivers, syzygies and plethystics, JHEP 11 (2007) 050 [hep-th/0608050] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  43. [43]
    K.D. Kennaway, Brane tilings, Int. J. Mod. Phys. A 22 (2007) 2977 [arXiv:0706.1660] [SPIRES].ADSMathSciNetGoogle Scholar
  44. [44]
    J. Davey, A. Hanany, N. Mekareeya and G. Torri, Phases of M2-brane theories, JHEP 06 (2009) 025 [arXiv:0903.3234] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  45. [45]
    Y. Imamura and K. Kimura, Quiver Chern-Simons theories and crystals, JHEP 10 (2008) 114 [arXiv:0808.4155] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  46. [46]
    J. de Boer, K. Hori and Y. Oz, Dynamics of \( \mathcal{N} = 2 \) supersymmetric gauge theories in three dimensions, Nucl. Phys. B 500 (1997) 163 [hep-th/9703100] [SPIRES].ADSGoogle Scholar
  47. [47]
    O. Aharony, A. Hanany, K.A. Intriligator, N. Seiberg and M.J. Strassler, Aspects of \( \mathcal{N} = 2 \) supersymmetric gauge theories in three dimensions, Nucl. Phys. B 499 (1997) 67 [hep-th/9703110] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  48. [48]
    N. Dorey and D. Tong, Mirror symmetry and toric geometry in three dimensional gauge theories, JHEP 05 (2000) 018 [hep-th/9911094] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  49. [49]
    D. Tong, Dynamics of \( \mathcal{N} = 2 \) supersymmetric Chern-Simons theories, JHEP 07 (2000) 019 [hep-th/0005186] [SPIRES].CrossRefADSGoogle Scholar
  50. [50]
    A. Hanany and D. Vegh, Quivers, tilings, branes and rhombi, JHEP 10 (2007) 029 [hep-th/0511063] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  51. [51]
    D. Marolf, Chern-Simons terms and the three notions of charge, hep-th/0006117 [SPIRES].
  52. [52]
    J. Evslin, The cascade is a MMS instanton, hep-th/0405210 [SPIRES].
  53. [53]
    F. Benini, F. Canoura, S. Cremonesi, C. Núñez and A.V. Ramallo, Backreacting flavors in the Klebanov-Strassler background, JHEP 09 (2007) 109 [arXiv:0706.1238] [SPIRES].CrossRefADSGoogle Scholar
  54. [54]
    F. Benini, A chiral cascade via backreacting D7-branes with flux, JHEP 10 (2008) 051 [arXiv:0710.0374] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  55. [55]
    R. Argurio, F. Benini, M. Bertolini, C. Closset and S. Cremonesi, Gauge/gravity duality and the interplay of various fractional branes, Phys. Rev. D 78 (2008) 046008 [arXiv:0804.4470] [SPIRES].ADSMathSciNetGoogle Scholar
  56. [56]
    F. Benini, M. Bertolini, C. Closset and S. Cremonesi, The \( \mathcal{N} = 2 \) cascade revisited and the enhancon bearings, Phys. Rev. D 79 (2009) 066012 [arXiv:0811.2207] [SPIRES].ADSMathSciNetGoogle Scholar
  57. [57]
    O. Aharony, A. Hashimoto, S. Hirano and P. Ouyang, D-brane charges in gravitational duals of 2+ 1 dimensional gauge theories and duality cascades, JHEP 01 (2010) 072 [arXiv:0906.2390] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  58. [58]
    A. Hashimoto, S. Hirano and P. Ouyang, Branes and fluxes in special holonomy manifolds and cascading field theories, JHEP 06 (2011) 101 [arXiv:1004.0903] [SPIRES].CrossRefADSGoogle Scholar
  59. [59]
    A. Hashimoto and P. Ouyang, Quantization of charges and fluxes in warped Stenzel geometry, JHEP 06 (2011) 124 [arXiv:1104.3517] [SPIRES].CrossRefADSGoogle Scholar
  60. [60]
    D.S. Freed and E. Witten, Anomalies in string theory with D-branes, hep-th/9907189 [SPIRES].
  61. [61]
    O. Bergman and S. Hirano, Anomalous radius shift in AdS 4 /CFT 3, JHEP 07 (2009) 016 [arXiv:0902.1743] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  62. [62]
    M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167 [SPIRES].
  63. [63]
    S. Gukov, M. Rangamani and E. Witten, Dibaryons, strings and branes in AdS orbifold models, JHEP 12 (1998) 025 [hep-th/9811048] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  64. [64]
    D.-E. Diaconescu and J. Gomis, Fractional branes and boundary states in orbifold theories, JHEP 10 (2000) 001 [hep-th/9906242] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  65. [65]
    M.R. Douglas, B. Fiol and C. Romelsberger, The spectrum of BPS branes on a noncompact Calabi-Yau, JHEP 09 (2005) 057 [hep-th/0003263] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  66. [66]
    M. Mariño, R. Minasian, G.W. Moore and A. Strominger, Nonlinear instantons from supersymmetric p-branes, JHEP 01 (2000) 005 [hep-th/9911206] [SPIRES].CrossRefADSGoogle Scholar
  67. [67]
    A. Klemm and E. Zaslow, Local mirror symmetry at higher genus, hep-th/9906046 [SPIRES].
  68. [68]
    O. Aharony, D. Jafferis, A. Tomasiello and A. Zaddaroni, Massive type IIA string theory cannot be strongly coupled, JHEP 11 (2010) 047 [arXiv:1007.2451] [SPIRES].CrossRefADSGoogle Scholar
  69. [69]
    K. Behrndt and M. Cvetič, General \( \mathcal{N} = 1 \) supersymmetric fluxes in massive type IIA string theory, Nucl. Phys. B 708 (2005) 45 [hep-th/0407263] [SPIRES].CrossRefADSGoogle Scholar
  70. [70]
    D. Lüst and D. Tsimpis, Supersymmetric AdS 4 compactifications of IIA supergravity, JHEP 02 (2005) 027 [hep-th/0412250] [SPIRES].CrossRefGoogle Scholar
  71. [71]
    B.S. Acharya, F. Benini and R. Valandro, Fixing moduli in exact type IIA flux vacua, JHEP 02 (2007) 018 [hep-th/0607223] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  72. [72]
    M. Petrini and A. Zaffaroni, \( \mathcal{N} = 2 \) solutions of massive type IIA and their Chern-Simons duals, JHEP 09 (2009) 107 [arXiv:0904.4915] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  73. [73]
    D. Lüst and D. Tsimpis, New supersymmetric AdS 4 type-II vacua, JHEP 09 (2009) 098 [arXiv:0906.2561] [SPIRES].CrossRefGoogle Scholar
  74. [74]
    N. Benishti, Emerging non-anomalous baryonic symmetries in the AdS 5 /CFT 4 correspondence, JHEP 06 (2011) 075 [arXiv:1102.1979] [SPIRES].CrossRefADSGoogle Scholar
  75. [75]
    J. Gomis, F. Marchesano and D. Mateos, An open string landscape, JHEP 11 (2005) 021 [hep-th/0506179] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  76. [76]
    J. Le Potier, Lectures on vector bundles, Cambridge University Press, Cambridge U.K. (1997).MATHGoogle Scholar
  77. [77]
    S. Cheon, D. Gang, S. Kim and J. Park, Refined test of AdS 4 /CFT 3 correspondence for \( \mathcal{N} = 2 \) , 3 theories, JHEP 05 (2011) 027 [arXiv:1102.4273] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  78. [78]
    E. Witten, On flux quantization in M-theory and the effective action, J. Geom. Phys. 22 (1997) 1 [hep-th/9609122] [SPIRES].CrossRefMATHADSMathSciNetGoogle Scholar
  79. [79]
    E. Witten, Non-perturbative superpotentials in string theory, Nucl. Phys. B 474 (1996) 343 [hep-th/9604030] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  80. [80]
    N. Benishti, D. Rodriguez-Gomez and J. Sparks, Baryonic symmetries and M5 branes in the AdS 4 /CFT 3 correspondence, JHEP 07 (2010) 024 [arXiv:1004.2045] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  81. [81]
    D. Gaiotto and A. Tomasiello, The gauge dual of Romans mass, JHEP 01 (2010) 015 [arXiv:0901.0969] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  82. [82]
    M. Fujita, W. Li, S. Ryu and T. Takayanagi, Fractional quantum Hall effect via holography: Chern-Simons, edge states and hierarchy, JHEP 06 (2009) 066 [arXiv:0901.0924] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  83. [83]
    A. Tomasiello and A. Zaffaroni, Parameter spaces of massive IIA solutions, JHEP 04 (2011) 067 [arXiv:1010.4648] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  84. [84]
    D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-theorem: \( \mathcal{N} = 2 \) field theories on the three-sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [SPIRES].CrossRefADSGoogle Scholar
  85. [85]
    S. Cremonesi, Type IIB construction of flavoured ABJ(M) and fractional M2 branes, JHEP 01 (2011) 076 [arXiv:1007.4562] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  86. [86]
    K. Hori, H. Ooguri and Y. Oz, Strong coupling dynamics of four-dimensional \( \mathcal{N} = 1 \) gauge theories from M-theory fivebrane, Adv. Theor. Math. Phys. 1 (1998) 1 [hep-th/9706082] [SPIRES].MathSciNetGoogle Scholar
  87. [87]
    J. Bhattacharya, S. Bhattacharyya, S. Minwalla and S. Raju, Indices for superconformal field theories in 3, 5 and 6 dimensions, JHEP 02 (2008) 064 [arXiv:0801.1435] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  88. [88]
    P.S. Aspinwall, D-branes on Calabi-Yau manifolds, hep-th/0403166 [SPIRES].
  89. [89]
    Meijer G-function Wikipedia webpage, http://en.wikipedia.org/wiki/Meijer G-function.

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Francesco Benini
    • 1
  • Cyril Closset
    • 2
  • Stefano Cremonesi
    • 3
  1. 1.Department of PhysicsPrinceton UniversityPrincetonU.S.A.
  2. 2.Department of Particle Physics and AstrophysicsWeizmann Institute of ScienceRehovotIsrael
  3. 3.Department of Particle Physics, Raymond and Beverly Sackler School of Physics and AstronomyTel-Aviv UniversityRamat-AvivIsrael

Personalised recommendations