Advertisement

Journal of High Energy Physics

, 2011:3 | Cite as

Canonical gauge coupling unification in the standard model with high-scale supersymmetry breaking

  • Yun-Jie Huo
  • Tianjun Li
  • Dimitri V. Nanopoulos
Article

Abstract

Inspired by the string landscape and the unified gauge coupling relation in the F-theory Grand Unified Theories (GUTs) and GUTs with suitable high-dimensional operators, we study the canonical gauge coupling unification and Higgs boson mass in the Standard Model (SM) with high-scale supersymmetry breaking. In the SM with GUT-scale supersymmetry breaking, we achieve the gauge coupling unification at about 5.3 × 1013 GeV, and the Higgs boson mass is predicted to range from 130 GeV to 147 GeV. In the SM with supersymmetry breaking scale from 104 GeV to 5.3 × 1013 GeV, gauge coupling unification can always be realized and the corresponding GUT scale M U is from 1016 GeV to 5.3 × 1013 GeV, respectively. Also, we obtain the Higgs boson mass from 114.4 GeV to 147 GeV. Moreover, the discrepancies among the SM gauge couplings at the GUT scale are less than about 4-6%. Furthermore, we present the SU(5) and SO(10) models from the F-theory model building and orbifold constructions, and show that we do not have the dimension-five and dimension-six proton decay problems even if M U  ≤ 5 × 1015 GeV.

Keywords

GUT Higgs Physics Compactification and String Models 

References

  1. [1]
    R. Bousso and J. Polchinski, Quantization of four-form fluxes and dynamical neutralization of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [SPIRES].ADSMathSciNetGoogle Scholar
  3. [3]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [SPIRES].ADSMathSciNetGoogle Scholar
  4. [4]
    L. Susskind, The anthropic landscape of string theory, hep-th/0302219 [SPIRES].
  5. [5]
    F. Denef and M.R. Douglas, Distributions of flux vacua, JHEP 05 (2004) 072 [hep-th/0404116] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  6. [6]
    F. Denef and M.R. Douglas, Distributions of nonsupersymmetric flux vacua, JHEP 03 (2005) 061 [hep-th/0411183] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  7. [7]
    S. Weinberg, Anthropic Bound on the Cosmological Constant, Phys. Rev. Lett. 59 (1987) 2607 [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    A. Giryavets, S. Kachru and P.K. Tripathy, On the taxonomy of flux vacua, JHEP 08 (2004) 002 [hep-th/0404243] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    L. Susskind, Supersymmetry breaking in the anthropic landscape, hep-th/0405189 [SPIRES].
  10. [10]
    M.R. Douglas, Statistical analysis of the supersymmetry breaking scale, hep-th/0405279 [SPIRES].
  11. [11]
    M.R. Douglas, Basic results in vacuum statistics, Comptes Rendus Physique 5 (2004) 965 [hep-th/0409207] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    M. Dine, E. Gorbatov and S.D. Thomas, Low energy supersymmetry from the landscape, JHEP 08 (2008) 098 [hep-th/0407043] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    E. Silverstein, Counter-intuition and scalar masses, hep-th/0407202 [SPIRES].
  14. [14]
    J.P. Conlon and F. Quevedo, On the explicit construction and statistics of Calabi-Yau flux vacua, JHEP 10 (2004) 039 [hep-th/0409215] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  15. [15]
    M. Dine, D. O’Neil and Z. Sun, Branches of the landscape, JHEP 07 (2005) 014 [hep-th/0501214] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    V. Barger, C.-W. Chiang, J. Jiang and T. Li, Axion models with high-scale supersymmetry breaking, Nucl. Phys. B 705 (2005) 71 [hep-ph/0410252] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    V. Barger, J. Jiang, P. Langacker and T. Li, Gauge coupling unification in the standard model, Phys. Lett. B 624 (2005) 233 [hep-ph/0503226] [SPIRES].ADSGoogle Scholar
  19. [19]
    V. Barger, J. Jiang, P. Langacker and T. Li, Non-canonical gauge coupling unification in high-scale supersymmetry breaking, Nucl. Phys. B 726 (2005) 149 [hep-ph/0504093] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    L.J. Hall and Y. Nomura, A Finely-Predicted Higgs Boson Mass from A Finely-Tuned Weak Scale, JHEP 03 (2010) 076 [arXiv:0910.2235] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    H. Davoudiasl, R. Kitano, T. Li and H. Murayama, The new minimal standard model, Phys. Lett. B 609 (2005) 117 [hep-ph/0405097] [SPIRES].ADSGoogle Scholar
  22. [22]
    C.D. Froggatt and H.B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    J.R. Ellis, S. Kelley and D.V. Nanopoulos, Precision LEP data, supersymmetric GUTs and string unification, Phys. Lett. B 249 (1990) 441 [SPIRES].ADSGoogle Scholar
  24. [24]
    J.R. Ellis, S. Kelley and D.V. Nanopoulos, Probing the desert using gauge coupling unification, Phys. Lett. B 260 (1991) 131 [SPIRES].ADSGoogle Scholar
  25. [25]
    U. Amaldi, W. de Boer and H. Furstenau, Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP, Phys. Lett. B 260 (1991) 447 [SPIRES].ADSGoogle Scholar
  26. [26]
    P. Langacker and M.-x. Luo, Implications of precision electroweak experiments for M t , ρ 0 , sin2 θ W and grand unification, Phys. Rev. D 44 (1991) 817 [SPIRES].ADSGoogle Scholar
  27. [27]
    C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  28. [28]
    R. Donagi and M. Wijnholt, Model Building with F-theory, arXiv:0802.2969 [SPIRES].
  29. [29]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and Exceptional Branes in F-theory — I, JHEP 01 (2009) 058 [arXiv:0802.3391] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  30. [30]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and Exceptional Branes in F-theory — II: Experimental Predictions, JHEP 01 (2009) 059 [arXiv:0806.0102] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  31. [31]
    R. Donagi and M. Wijnholt, Breaking GUT Groups in F-theory, arXiv:0808.2223 [SPIRES].
  32. [32]
    A. Font and L.E. Ibáñez, Yukawa Structure from U(1) Fluxes in F-theory Grand Unification, JHEP 02 (2009) 016 [arXiv:0811.2157] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    J. Jiang, T. Li, D.V. Nanopoulos and D. Xie, F-SU(5), Phys. Lett. B 677 (2009) 322 [SPIRES].ADSMathSciNetGoogle Scholar
  34. [34]
    R. Blumenhagen, Gauge Coupling Unification in F-theory Grand Unified Theories, Phys. Rev. Lett. 102 (2009) 071601 [arXiv:0812.0248] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  35. [35]
    J. Jiang, T. Li, D.V. Nanopoulos and D. Xie, Flipped SU(5) × U(1)X Models from F-theory, Nucl. Phys. B 830 (2010) 195 [arXiv:0905.3394] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  36. [36]
    T. Li, SU(5) and SO(10) Models from F-theory with Natural Yukawa Couplings, Phys. Rev. D 81 (2010) 065018 [arXiv:0905.4563] [SPIRES].ADSGoogle Scholar
  37. [37]
    C.T. Hill, Are There Significant Gravitational Corrections to the Unification Scale?, Phys. Lett. B 135 (1984) 47 [SPIRES].ADSGoogle Scholar
  38. [38]
    Q. Shafi and C. Wetterich, Modification of GUT predictions in the presence of spontaneous compactification, Phys. Rev. Lett. 52 (1984) 875 [SPIRES].CrossRefADSGoogle Scholar
  39. [39]
    J.R. Ellis, K. Enqvist, D.V. Nanopoulos and K. Tamvakis, Gaugino Masses And Grand Unification, Phys. Lett. B 155 (1985) 381 [SPIRES].ADSGoogle Scholar
  40. [40]
    T. Li and D.V. Nanopoulos, Generalizing Minimal Supergravity, Phys. Lett. B 692 (2010) 121 [arXiv:1002.4183] [SPIRES].ADSMathSciNetGoogle Scholar
  41. [41]
    Y. Kawamura, Gauge symmetry reduction from the extra space S 1/Z 2, Prog. Theor. Phys. 103 (2000) 613 [hep-ph/9902423] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  42. [42]
    Y. Kawamura, Triplet-doublet splitting, proton stability and extra dimension, Prog. Theor. Phys. 105 (2001) 999 [hep-ph/0012125] [SPIRES].CrossRefADSGoogle Scholar
  43. [43]
    Y. Kawamura, Split multiplets, coupling unification and extra dimension, Prog. Theor. Phys. 105 (2001) 691 [hep-ph/0012352] [SPIRES]CrossRefMATHADSGoogle Scholar
  44. [44]
    G. Altarelli and F. Feruglio, SU(5) grand unification in extra dimensions and proton decay, Phys. Lett. B 511 (2001) 257 [hep-ph/0102301] [SPIRES].ADSGoogle Scholar
  45. [45]
    L.J. Hall and Y. Nomura, Gauge unification in higher dimensions, Phys. Rev. D 64 (2001) 055003 [hep-ph/0103125] [SPIRES].ADSGoogle Scholar
  46. [46]
    A. Hebecker and J. March-Russell, A minimal S 1/(Z 2 × Z 2) orbifold GUT, Nucl. Phys. B 613 (2001) 3 [hep-ph/0106166] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  47. [47]
    T.-j. Li, GUT breaking on M 4 × T 2/(Z 2 × Z 2), Phys. Lett. B 520 (2001) 377 [hep-th/0107136] [SPIRES].ADSGoogle Scholar
  48. [48]
    T.-j. Li, N = 2 supersymmetric GUT breaking on T(2) orbifolds, Nucl. Phys. B 619 (2001) 75 [hep-ph/0108120] [SPIRES].CrossRefADSGoogle Scholar
  49. [49]
    R. Dermisek and A. Mafi, SO(10) grand unification in five dimensions: Proton decay and the mu problem, Phys. Rev. D 65 (2002) 055002 [hep-ph/0108139] [SPIRES].ADSGoogle Scholar
  50. [50]
    T.-j. Li, Gauge symmmetry and supersymmetry breaking by discrete symmetry, Nucl. Phys. B 633 (2002) 83 [hep-th/0112255] [SPIRES].CrossRefADSGoogle Scholar
  51. [51]
    LEP Working Group for Higgs boson searches collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [SPIRES].ADSGoogle Scholar
  52. [52]
    Particle Data Group collaboration, W.M. Yao et al., Review of particle physics, J. Phys. G 33 (2006) 1.ADSGoogle Scholar
  53. [53]
    Tevatron Electroweak Working Group and CDF and D0 collaboration, Combination of CDF and D0 Results on the Mass of the Top Quark, arXiv:0903.2503 [SPIRES].
  54. [54]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [SPIRES].ADSGoogle Scholar
  55. [55]
    K. Melnikov and T.v. Ritbergen, The three-loop relation between the MS-bar and the pole quark masses, Phys. Lett. B 482 (2000) 99 [hep-ph/9912391] [SPIRES].ADSGoogle Scholar
  56. [56]
    J. Hisano, H. Murayama and T. Yanagida, Nucleon decay in the minimal supersymmetric SU(5) grand unification, Nucl. Phys. B 402 (1993) 46 [hep-ph/9207279] [SPIRES].CrossRefADSGoogle Scholar
  57. [57]
    H. Murayama and A. Pierce, Not even decoupling can save minimal supersymmetric SU(5), Phys. Rev. D 65 (2002) 055009 [hep-ph/0108104] [SPIRES].ADSGoogle Scholar
  58. [58]
    P. Nath and P. Fileviez Perez, Proton stability in grand unified theories, in strings and in branes, Phys. Rept. 441 (2007) 191 [hep-ph/0601023] [SPIRES].CrossRefADSMathSciNetGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Yun-Jie Huo
    • 1
  • Tianjun Li
    • 1
    • 2
  • Dimitri V. Nanopoulos
    • 2
    • 3
    • 4
  1. 1.Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingP.R. China
  2. 2.George P. and Cynthia W. Mitchell Institute for Fundamental PhysicsTexas A &M UniversityCollege StationU.S.A.
  3. 3.Astroparticle Physics Group, Houston Advanced Research Center (HARC)WoodlandsU.S.A.
  4. 4.Academy of Athens, Division of Natural SciencesAthensGreece

Personalised recommendations