Advertisement

Journal of High Energy Physics

, 2010:95 | Cite as

Wilson loops in \( \mathcal{N} = 2 \) superconformal Yang-Mills theory

  • Roman Andree
  • Donovan Young
Article

Abstract

We present a three-loop \( \left( {\mathcal{O}\left( {{g^6}} \right)} \right) \) calculation of the difference between the expectation values of Wilson loops evaluated in \( \mathcal{N} = 4 \) and superconformal \( \mathcal{N} = 2 \) super-symmetric Yang-Mills theory with gauge group SU(N) using dimensional reduction. We find a massive reduction of required Feynman diagrams, leaving only certain two-matterloop corrections to the gauge field and associated scalar propagator. This “diagrammatic difference” leaves a finite result proportional to the bare propagators and allows the recovery of the ζ(3) term coming from the matrix model for the 1/2 BPS circular Wilson loop in the \( \mathcal{N} = 2 \) theory. The result is valid also for closed Wilson loops of general shape. Comments are made concerning light-like polygons and supersymmetric loops in the plane and on S 2.

Keywords

Supersymmetric gauge theory AdS-CFT Correspondence 

References

  1. [1]
    J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    S.-J. Rey, S. Theisen and J.-T. Yee, Wilson-Polyakov loop at finite temperature in large-N gauge theory and anti-de Sitter supergravity, Nucl. Phys. B 527 (1998) 171 [hep-th/9803135] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    J.K. Erickson, G.W. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    N. Drukker and D.J. Gross, An exact prediction of N = 4 SUSYM theory for string theory, J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [SPIRES]. MathSciNetADSMATHCrossRefGoogle Scholar
  5. [5]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, arXiv:0712.2824 [SPIRES].
  6. [6]
    F. Passerini, Gauge Theory Wilson Loops and Conformal Toda Field Theory, JHEP 03 (2010) 125 [arXiv:1003.1151] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    N. Drukker, D.R. Morrison and T. Okuda, Loop operators and S-duality from curves on Riemann surfaces, JHEP 09 (2009) 031 [arXiv:0907.2593] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    N. Drukker, J. Gomis, T. Okuda and J. Teschner, Gauge Theory Loop Operators and Liouville Theory, JHEP 02 (2010) 057 [arXiv:0909.1105] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    N. Drukker, D. Gaiotto and J. Gomis, The Virtue of Defects in 4D Gauge Theories and 2D CFT s, arXiv:1003.1112 [SPIRES].
  10. [10]
    L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface operators in N = 2 gauge theory and Liouville modular geometry, JHEP 01 (2010) 113 [arXiv:0909.0945] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    K. Zarembo, Supersymmetric Wilson loops, Nucl. Phys. B 643 (2002) 157 [hep-th/0205160] [SPIRES]. MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Supersymmetric Wilson loops on S 3, JHEP 05 (2008) 017 [arXiv:0711.3226] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    S.-J. Rey and T. Suyama, Exact Results and Holography of Wilson Loops in N = 2 Superconformal (Quiver) Gauge Theories, arXiv:1001.0016 [SPIRES].
  14. [14]
    A. Agarwal and D. Young, Supersymmetric Wilson Loops in Diverse Dimensions, JHEP 06 (2009) 063 [arXiv:0904.0455] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    Z. Guralnik and B. Kulik, Properties of chiral Wilson loops, JHEP 01 (2004) 065 [hep-th/0309118] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    Z. Guralnik, S. Kovacs and B. Kulik, Less is more: Non-renormalization theorems from lower dimensional superspace, Int. J. Mod. Phys. A 20 (2005) 4546 [hep-th/0409091] [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, More supersymmetric Wilson loops, Phys. Rev. D 76 (2007) 107703 [arXiv:0704.2237] [SPIRES].MathSciNetADSGoogle Scholar
  18. [18]
    N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Wilson loops: From four-dimensional SYM to two-dimensional YM, Phys. Rev. D 77 (2008) 047901 [arXiv:0707.2699] [SPIRES].MathSciNetADSGoogle Scholar
  19. [19]
    D. Young, BPS Wilson Loops on S 2 at Higher Loops, JHEP 05 (2008) 077 [arXiv:0804.4098] [SPIRES].ADSCrossRefGoogle Scholar
  20. [20]
    A. Bassetto et al., Correlators of supersymmetric Wilson-loops, protected operators and matrix models in N = 4 SYM, JHEP 08 (2009) 061 [arXiv:0905.1943] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    A. Bassetto et al., Correlators of supersymmetric Wilson loops at weak and strong coupling, JHEP 03 (2010) 038 [arXiv:0912.5440] [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    S. Giombi, V. Pestun and R. Ricci, Notes on supersymmetric Wilson loops on a two-sphere, JHEP 07 (2010) 088 [arXiv:0905.0665] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    S. Giombi and V. Pestun, Correlators of local operators and 1/8 BPS Wilson loops on S 2 from 2d YM and matrix models, arXiv:0906.1572 [SPIRES].
  24. [24]
    V. Pestun, Localization of the four-dimensional N = 4 SYM to a two-sphere and 1/8 BPS Wilson loops, arXiv:0906.0638 [SPIRES].
  25. [25]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    E.W.N. Glover, V.V. Khoze and C. Williams, Component MHV amplitudes in N = 2 SQCD and in N = 4 SYM at one loop, JHEP 08 (2008) 033 [arXiv:0805.4190] [SPIRES].MathSciNetCrossRefGoogle Scholar
  27. [27]
    S. Lal and S. Raju, The Next-to-Simplest Quantum Field Theories, Phys. Rev. D 81 (2010) 105002 [arXiv:0910.0930] [SPIRES].MathSciNetADSGoogle Scholar
  28. [28]
    A. Gadde, E. Pomoni and L. Rastelli, Spin Chains in N = 2 Superconformal Theories: from the Z 2 Quiver to Superconformal QCD, arXiv:1006.0015 [SPIRES].
  29. [29]
    A. Gadde, E. Pomoni and L. Rastelli, The Veneziano Limit of N = 2 Superconformal QCD: Towards the String Dual of N = 2 SU(N c) SYM with N f = 2N c, arXiv:0912.4918 [SPIRES].
  30. [30]
    A. Grozin, Lectures on QED and QCD, hep-ph/0508242 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Humboldt-Universität zu Berlin, Institut für PhysikBerlinGermany

Personalised recommendations