Journal of High Energy Physics

, 2010:46 | Cite as

The inert doublet model of dark matter revisited



The inert doublet model, a minimal extension of the Standard Model by a second higgs doublet with no direct couplings to quarks or leptons, is one of the simplest scenarios that can explain the dark matter. In this paper, we study in detail the impact of dark matter annihilation into the three-body final state \( W{W^*}\left( { \to Wf\bar{f}'} \right) \) on the phenomenology of the inert doublet model. We find that this new annihilation mode dominates, in a relevant portion of the parameter space, over those into two-body final states considered in previous analysis. As a result, the computati on of the relic density is modified and the viable regions of the model are displaced. After obtaining the genuine viable regions for different sets of parameters, we compute the direct detection cross section of inert higgs dark matter and find it to be up to two orders of magnitude smaller than what is obtained for two-body final states only. Other implications of these results, including the modification to the decay width of the higgs and to the indirect detection signatures of inert higgs dark matter, are also briefly considered. We demonstrate, therefore, that the annihilation into the three-body final state WW* can not be neglected, as it has a important impact on the entire phenomenology of the inert do ublet model.


Beyond Standard Model Cosmology of Theories beyond the SM Higgs Physics 


  1. [1]
    WMAP collaboration, E. Komatsu et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 180 (2009) 330 [arXiv:0803.0547] [SPIRES].ADSCrossRefGoogle Scholar
  2. [2]
    N.G. Deshpande and E. Ma, Pattern of symmetry breaking with two Higgs doublets, Phys. Rev. D18 (1978) 2574 [SPIRES].ADSGoogle Scholar
  3. [3]
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [SPIRES].ADSGoogle Scholar
  4. [4]
    R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: an alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [SPIRES].ADSGoogle Scholar
  5. [5]
    D. Majumdar and A. Ghosal, Dark matter candidate in a heavy Higgs model — Direct detection rates, Mod. Phys. Lett. A 23 (2008) 2011 [hep-ph/0607067] [SPIRES].ADSGoogle Scholar
  6. [6]
    T. Hambye and M.H.G. Tytgat, Electroweak symmetry breaking induced by dark matter, Phys. Lett. B 659 (2008) 651 [arXiv:0707.0633] [SPIRES].ADSGoogle Scholar
  7. [7]
    L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H.G. Tytgat, The inert doublet model: an archetype for dark matter, JCAP 02 (2007) 028 [hep-ph/0612275] [SPIRES].ADSGoogle Scholar
  8. [8]
    M. Gustafsson, E. Lundstrom, L. Bergstrom and J. Edsjo, Significant gamma lines from inert Higgs dark matter, Phys. Rev. Lett. 99 (2007) 041301 [astro-ph/0703512] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    Q.-H. Cao, E. Ma and G. Rajasekaran, Observing the dark scalar doublet and its impact on the standard-model Higgs boson at colliders, Phys. Rev. D 76 (2007) 095011 [arXiv:0708.2939] [SPIRES].ADSGoogle Scholar
  10. [10]
    P. Agrawal, E.M. Dolle and C.A. Krenke, Signals of inert doublet dark matter in neutrino telescopes, Phys. Rev. D 79 (2009) 015015 [arXiv:0811.1798] [SPIRES].ADSGoogle Scholar
  11. [11]
    S. Andreas, T. Hambye and M.H.G. Tytgat, WIMP dark matter, Higgs exchange and DAMA, JCAP 10 (2008) 034 [arXiv:0808.0255] [SPIRES].ADSGoogle Scholar
  12. [12]
    E. Lundstrom, M. Gustafsson and J. Edsjo, The inert doublet model and LEPII limits, Phys. Rev. D 79 (2009) 035013 [arXiv:0810.3924] [SPIRES].ADSGoogle Scholar
  13. [13]
    E. Nezri, M.H.G. Tytgat and G. Vertongen, Positrons and antiprotons from inert doublet model dark matter, JCAP 04 (2009) 014 [arXiv:0901.2556] [SPIRES].ADSGoogle Scholar
  14. [14]
    E. Dolle, X. Miao, S. Su and B. Thomas, Dilepton signals in the inert doublet model, Phys. Rev. D 81 (2010) 035003 [arXiv:0909.3094] [SPIRES].ADSGoogle Scholar
  15. [15]
    C.E. Yaguna, Large contributions to dark matter annihilation from three-body final states, Phys. Rev. D 81 (2010) 075024 [arXiv:1003.2730] [SPIRES].ADSGoogle Scholar
  16. [16]
    X.-l. Chen and M. Kamionkowski, Three-body annihilation of neutralinos below two-body thresholds, JHEP 07 (1998) 001 [hep-ph/9805383] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    Y. Hosotani, P. Ko and M. Tanaka, Stable Higgs bosons as cold dark matter, Phys. Lett. B 680 (2009) 179 [arXiv:0908.0212] [SPIRES].ADSGoogle Scholar
  18. [18]
    C. Amsler et al. Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].ADSGoogle Scholar
  19. [19]
    A. Pierce and J. Thaler, Natural dark matter from an unnatural Higgs boson and new colored particles at the TeV scale, JHEP 08 (2007) 026 [hep-ph/0703056] [SPIRES].ADSCrossRefGoogle Scholar
  20. [20]
    OPAL collaboration, G. Abbiendi et al., Search for chargino and neutralino production at \( \sqrt {s} = 192\;GeV \) to 209 GeV at LEP, Eur. Phys. J. C 35 (2004) 1 [hep-ex/0401026] [SPIRES].ADSGoogle Scholar
  21. [21]
    S. Andreas, M.H.G. Tytgat and Q. Swillens, Neutrinos from inert doublet dark matter, JCAP 04 (2009) 004 [arXiv:0901.1750] [SPIRES].ADSGoogle Scholar
  22. [22]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [SPIRES].ADSCrossRefGoogle Scholar
  23. [23]
    T. Hambye, F.S. Ling, L. Lopez Honorez and J. Rocher, Scalar multiplet dark matter, JHEP 07 (2009) 090 [arXiv:0903.4010] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    P. Gondolo et al., DarkSUSY: computing supersymmetric dark matter propertie s numerically, JCAP 07 (2004) 008 [astro-ph/0406204] [SPIRES].ADSGoogle Scholar
  25. [25]
  26. [26]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.1, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: a program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: version 1.3, Comput. Phys. Commun. 174 (2006) 577 [hep-ph/0405253] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: a program for calculating the relic density in the MSSM, Comput. Phys. Commun. 149 (2002) 103 [hep-ph/0112278] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    The CDMS-II collaboration, Z. Ahmed et al., Dark matter search results from the CDMS II experiment, Science 327 (2010) 1619 [arXiv:0912.3592] [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Departamento de Física Teórica C-XI and Instituto de Física Teórica UAM-CSICUniversidad Autónoma de MadridMadridSpain
  2. 2.Service de Physique ThéoriqueUniversité Libre de BruxellesBrusselsBelgium
  3. 3.Departamento de Física Teórica C-XI and Instituto de Física Teórica UAM-CSICUniversidad Autónoma de MadridMadridSpain

Personalised recommendations