Journal of High Energy Physics

, 2010:38 | Cite as

Heavy quarkonium in a weakly-coupled quark-gluon plasma below the melting temperature

  • Nora Brambilla
  • Miguel Ángel Escobedo
  • Jacopo Ghiglieri
  • Joan Soto
  • Antonio Vairo


We calculate the heavy quarkonium energy levels and decay widths in a quark-gluon plasma, whose temperature T and screening mass m D satisfy the hierarchy s T s 2m D (m being the heavy-quark mass), at order s 5 . We first sequentially integrate out the scales m, mα s and T, and, next, we carry out the calculations in the resulting effective theory using techniques of integration by regions. A collinear region is identified, which contributes at this order. We also discuss the implications of our results concerning heavy quarkonium suppression in heavy ion collisions.


Heavy Quark Physics Thermal Field Theory QCD 


  1. [1]
    T. Matsui and H. Satz, J/psi Suppression by quark-gluon Plasma Formation, Phys. Lett. B 178 (1986) 416 [SPIRES].ADSGoogle Scholar
  2. [2]
    C. Lourenço, Open questions in quarkonium and electromagnetic probes, Nucl. Phys. A 783 (2007) 451 [nucl-ex/0612014] [SPIRES].ADSGoogle Scholar
  3. [3]
    M. Laine, O. Philipsen, P. Romatschke and M. Tassler, Real-time static potential in hot QCD, JHEP 03 (2007) 054 [hep-ph/0611300] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    M. Laine, A resummed perturbative estimate for the quarkonium spectral function in hot QCD, JHEP 05 (2007) 028 [arXiv:0704.1720] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    Y. Burnier, M. Laine and M. Vepsäläinen, Heavy quarkonium in any channel in resummed hot QCD, JHEP 01 (2008) 043 [arXiv:0711.1743] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    A. Beraudo, J.P. Blaizot and C. Ratti, Real and imaginary-time \( Q\bar{Q} \) correlators in a thermal medium, Nucl. Phys. A 806 (2008) 312 [arXiv:0712.4394] [SPIRES].ADSGoogle Scholar
  7. [7]
    M.A. Escobedo and J. Soto, Non-relativistic bound states at finite temperature (I): the hydrogen atom, Phys. Rev. A 78 (2008) 032520 [arXiv:0804.0691] [SPIRES].ADSGoogle Scholar
  8. [8]
    N. Brambilla, J. Ghiglieri, A. Vairo and P. Petreczky, Static quark-antiquark pairs at finite temperature, Phys. Rev. D 78 (2008) 014017 [arXiv:0804.0993] [SPIRES].ADSGoogle Scholar
  9. [9]
    P. Petreczky, Heavy quark potentials and quarkonia binding, Eur. Phys. J. C 43 (2005) 51 [hep-lat/0502008] [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    H. Satz, Colour deconfinement and quarkonium binding, J. Phys. G 32 (2006) R25 [hep-ph/0512217] [SPIRES].ADSGoogle Scholar
  11. [11]
    M. Laine, How to compute the thermal quarkonium spectral function from first principles?, Nucl. Phys. A 820 (2009) 25c–32c [arXiv:0810.1112] [SPIRES].ADSGoogle Scholar
  12. [12]
    N. Brambilla, A. Pineda, J. Soto and A. Vairo, Effective field theories for heavy quarkonium, Rev. Mod. Phys. 77 (2005) 1423 [hep-ph/0410047] [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    M.A. Escobedo and J. Soto, Non-relativistic bound states at finite temperature (II): the muonic hydrogen, arXiv:1008.0254 [SPIRES].
  14. [14]
    P.V. Landshoff and A. Rebhan, Covariant gauges at finite temperature, Nucl. Phys. B 383 (1992) 607 [Erratum ibid. B 406 (1993) 517] [hep-ph/9205235] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    W.E. Caswell and G.P. Lepage, Effective Lagrangians for Bound State Problems in QED, QCD and Other Field Theories, Phys. Lett. B 167 (1986) 437 [SPIRES].ADSGoogle Scholar
  16. [16]
    A. Pineda and J. Soto, Effective field theory for ultrasoft momenta in NRQCD and NRQED, Nucl. Phys. Proc. Suppl. 64 (1998) 428 [hep-ph/9707481] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    N. Brambilla, A. Pineda, J. Soto and A. Vairo, Potential NRQCD: An effective theory for heavy quarkonium, Nucl. Phys. B 566 (2000) 275 [hep-ph/9907240] [SPIRES].CrossRefGoogle Scholar
  18. [18]
    A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Three-loop static potential, Phys. Rev. Lett. 104 (2010) 112002 [arXiv:0911.4742] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    C. Anzai, Y. Kiyo and Y. Sumino, Static QCD potential at three-loop order, Phys. Rev. Lett. 104 (2010) 112003 [arXiv:0911.4335] [SPIRES].ADSCrossRefGoogle Scholar
  20. [20]
    B.A. Kniehl, A.A. Penin, Y. Schröder, V.A. Smirnov and M. Steinhauser, Two-loop static QCD potential for general colour state, Phys. Lett. B 607 (2005) 96 [hep-ph/0412083] [SPIRES].ADSGoogle Scholar
  21. [21]
    T. Appelquist, M. Dine and I.J. Muzinich, The Static Limit of Quantum Chromodynamics, Phys. Rev. D 17 (1978) 2074 [SPIRES].ADSGoogle Scholar
  22. [22]
    N. Brambilla, A. Pineda, J. Soto and A. Vairo, The infrared behaviour of the static potential in perturbative QCD, Phys. Rev. D 60 (1999) 091502 [hep-ph/9903355] [SPIRES].ADSGoogle Scholar
  23. [23]
    N. Brambilla, A. Pineda, J. Soto and A. Vairo, The heavy quarkonium spectrum at order mα s 5 ln(α s), Phys. Lett. B 470 (1999) 215 [hep-ph/9910238] [SPIRES].ADSGoogle Scholar
  24. [24]
    B.A. Kniehl, A.A. Penin, V.A. Smirnov and M. Steinhauser, Potential NRQCD and heavy-quarkonium spectrum at next-to-next-to-next-to-leading order, Nucl. Phys. B 635 (2002) 357 [hep-ph/0203166] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    A.A. Penin and M. Steinhauser, Heavy Quarkonium Spectrum at \( \mathcal{O}\left( {\alpha_s^5{m_q}} \right) \) and Bottom Top Quark Mass Determination, Phys. Lett. B 538 (2002) 335 [hep-ph/0204290] [SPIRES].ADSGoogle Scholar
  26. [26]
    A. Vairo, Effective field theories for heavy quarkonium at finite temperature, PoS(Confinement8)002 [arXiv:0901.3495] [SPIRES].
  27. [27]
    E. Braaten and R.D. Pisarski, Simple effective Lagrangian for hard thermal loops, Phys. Rev. D 45 (1992) 1827 [SPIRES].ADSGoogle Scholar
  28. [28]
    B.A. Kniehl and A.A. Penin, Ultrasoft effects in heavy quarkonium physics, Nucl. Phys. B 563 (1999) 200 [hep-ph/9907489] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    S. Titard and F.J. Yndurain, Rigorous QCD evaluation of spectrum and ground state properties of heavy \( q\bar{q} \) systems: With a precision determination of m(b), M(η b), Phys. Rev. D 49 (1994) 6007 [hep-ph/9310236] [SPIRES].ADSGoogle Scholar
  30. [30]
    N. Brambilla, D. Gromes and A. Vairo, Poincaré invariance constraints on NRQCD and potential NRQCD, Phys. Lett. B 576 (2003) 314 [hep-ph/0306107] [SPIRES].ADSGoogle Scholar
  31. [31]
    M.E. Carrington, D.-f. Hou and M.H. Thoma, Equilibrium and non-equilibrium hard thermal loop resummation in the real time formalism, Eur. Phys. J. C 7 (1999) 347 [hep-ph/9708363] [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Nora Brambilla
    • 1
  • Miguel Ángel Escobedo
    • 2
  • Jacopo Ghiglieri
    • 1
    • 3
  • Joan Soto
    • 2
  • Antonio Vairo
    • 1
  1. 1.Physik-DepartmentTechnische Universität MünchenGarchingGermany
  2. 2.Departament d’Estructura i Constituents de la Matèria and Institut de Ciències del CosmosUniversitat de BarcelonaBarcelona, CataloniaSpain
  3. 3.Excellence Cluster UniverseTechnische Universität MünchenGarchingGermany

Personalised recommendations