Skip to main content
Log in

Anomaly mediation from unbroken supergravity

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

When supergravity (SUGRA) is spontaneously broken, it is well known that anomaly mediation generates sparticle soft masses proportional to the gravitino mass. Recently, we showed that one-loop anomaly-mediated gaugino masses should be associated with unbroken supersymmetry (SUSY). This counterintuitive result arises because the underlying symmetry structure of (broken) SUGRA in flat space is in fact (unbroken) SUSY in anti-de Sitter (AdS) space. When quantum corrections are regulated in a way that preserves SUGRA, the underlying AdS curvature (proportional to the gravitino mass) necessarily appears in the regulated action, yielding soft masses without corresponding goldstino couplings. In this paper, we extend our analysis of anomaly mediation to sfermion soft masses. Already at tree-level we encounter a number of surprises, including the fact that zero soft masses correspond to broken (AdS) SUSY. At one-loop, we explain how anomaly mediation appears when regulating SUGRA in a way that preserves super-Weyl invariance. We find that recent claims in the literature about the non-existence of anomaly mediation were based on a Wilsonian effective action with residual gauge dependence, and the gauge-invariant 1PI effective action contains the expected anomaly-mediated spectrum. Finally, we calculate the sfermion spectrum to all orders, and use supertrace relations to derive the familiar two-loop soft masses from minimal anomaly mediation, as well as unfamiliar tree-level and one-loop goldstino couplings consistent with renormalization group invariance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys.B 557 (1999) 79 [hep-th/9810155] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP12 (1998) 027 [hep-ph/9810442] [INSPIRE].

    Article  ADS  Google Scholar 

  3. F. D’Eramo, J. Thaler and Z. Thomas, The two faces of anomaly mediation, JHEP06 (2012) 151 [arXiv:1202.1280] [INSPIRE].

    Article  ADS  Google Scholar 

  4. J.P. Conlon, M. Goodsell and E. Palti, Anomaly mediation in superstring theory, Fortsch. Phys.59 (2011) 5 [arXiv:1008.4361] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. Z. Chacko, M.A. Luty, I. Maksymyk and E. Ponton, Realistic anomaly mediated supersymmetry breaking, JHEP04 (2000) 001 [hep-ph/9905390] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. J.A. Bagger, T. Moroi and E. Poppitz, Anomaly mediation in supergravity theories, JHEP04 (2000) 009 [hep-th/9911029] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. J.A. Bagger, T. Moroi and E. Poppitz, Quantum inconsistency of Einstein supergravity, Nucl. Phys.B 594 (2001) 354 [hep-th/0003282] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. M. Dine and N. Seiberg, Comments on quantum effects in supergravity theories, JHEP03 (2007) 040 [hep-th/0701023] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. B. Gripaios, H.D. Kim, R. Rattazzi, M. Redi and C. Scrucca, Gaugino mass in AdS space, JHEP02 (2009) 043 [arXiv:0811.4504] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. D.-W. Jung and J.Y. Lee, Anomaly-mediated supersymmetry breaking demystified, JHEP03 (2009) 123 [arXiv:0902.0464] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. D. Sanford and Y. Shirman, Anomaly Mediation from Randall-Sundrum to Dine-Seiberg, Phys. Rev.D 83 (2011) 125020 [arXiv:1012.1860] [INSPIRE].

    ADS  Google Scholar 

  12. S. de Alwis, On anomaly mediated SUSY breaking, Phys. Rev.D 77 (2008) 105020 [arXiv:0801.0578] [INSPIRE].

    ADS  Google Scholar 

  13. S. de Alwis, AMSB and the logic of spontaneous SUSY breaking, JHEP01 (2013) 006 [arXiv:1206.6775] [INSPIRE].

    Article  Google Scholar 

  14. V. Kaplunovsky and J. Louis, Field dependent gauge couplings in locally supersymmetric effective quantum field theories, Nucl. Phys.B 422 (1994) 57 [hep-th/9402005] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Annals Phys.144 (1982) 249 [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. G. Giudice and A. Masiero, A natural solution to the mu problem in supergravity theories, Phys. Lett.B 206 (1988) 480 [INSPIRE].

    Article  ADS  Google Scholar 

  17. N. Arkani-Hamed, G.F. Giudice, M.A. Luty and R. Rattazzi, Supersymmetry breaking loops from analytic continuation into superspace, Phys. Rev.D 58 (1998) 115005 [hep-ph/9803290] [INSPIRE].

    ADS  Google Scholar 

  18. I. Jack, D. Jones and A. Pickering, Renormalization invariance and the soft β-functions, Phys. Lett.B 426 (1998) 73 [hep-ph/9712542] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  19. I. Jack and D. Jones, RG invariant solutions for the soft supersymmetry breaking parameters, Phys. Lett.B 465 (1999) 148 [hep-ph/9907255] [INSPIRE].

    Article  ADS  Google Scholar 

  20. A. Pomarol and R. Rattazzi, Sparticle masses from the superconformal anomaly, JHEP05 (1999) 013 [hep-ph/9903448] [INSPIRE].

    Article  ADS  Google Scholar 

  21. H. Nicolai, Representations of supersymmetry in anti-de Sitter space, CERN-TH-3882.

  22. D. Bertolini, J. Thaler and Z. Thomas, TASI 2012: Super-Tricks for Superspace, arXiv:1302.6229 [INSPIRE].

  23. J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992).

    MATH  Google Scholar 

  24. A. Adams, H. Jockers, V. Kumar and J.M. Lapan, N = 1 σ-models in AdS4, JHEP12 (2011) 042 [arXiv:1104.3155] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  25. G. Festuccia and N. Seiberg, Rigid supersymmetric theories in curved superspace, JHEP06 (2011) 114 [arXiv:1105.0689] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. C. Cheung, Y. Nomura and J. Thaler, Goldstini, JHEP03 (2010) 073 [arXiv:1002.1967] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. C. Cheung, F. D’Eramo and J. Thaler, The spectrum of goldstini and modulini, JHEP08 (2011) 115 [arXiv:1104.2600] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  28. K. Izawa, Y. Nakai and T. Shimomura, Higgs portal to visible supersymmetry breaking, JHEP03 (2011) 007 [arXiv:1101.4633] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  29. D. Bertolini, K. Rehermann and J. Thaler, Visible supersymmetry breaking and an invisible Higgs, JHEP04 (2012) 130 [arXiv:1111.0628] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  30. M.A. Luty and R. Sundrum, Supersymmetry breaking and composite extra dimensions, Phys. Rev.D 65 (2002) 066004 [hep-th/0105137] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  31. M. Luty and R. Sundrum, Anomaly mediated supersymmetry breaking in four-dimensions, naturally, Phys. Rev.D 67 (2003) 045007 [hep-th/0111231] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  32. M. Schmaltz and R. Sundrum, Conformal sequestering simplified, JHEP11 (2006) 011 [hep-th/0608051] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. M. Roček, Linearizing the Volkov-Akulov model, Phys. Rev. Lett.41 (1978) 451 [INSPIRE].

    Article  ADS  Google Scholar 

  34. U. Lindström and M. Roček, Constrained local superfields, Phys. Rev.D 19 (1979) 2300 [INSPIRE].

    ADS  Google Scholar 

  35. Z. Komargodski and N. Seiberg, From linear SUSY to constrained superfields, JHEP09 (2009) 066 [arXiv:0907.2441] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. M.K. Gaillard and V. Jain, Supergravity coupled to chiral matter at one loop, Phys. Rev.D 49 (1994) 1951 [hep-th/9308090] [INSPIRE].

    ADS  Google Scholar 

  37. M.K. Gaillard, V. Jain and K. Saririan, Supergravity at one loop. 2: Chiral and Yang-Mills matter, Phys. Rev.D 55 (1997) 883 [hep-th/9606052] [INSPIRE].

    ADS  Google Scholar 

  38. W. Siegel and S.J. Gates Jr., Superfield supergravity, Nucl. Phys.B 147 (1979) 77 [INSPIRE].

    Article  ADS  Google Scholar 

  39. T. Kugo and S. Uehara, Conformal and Poincaré Tensor Calculi in N = 1 Supergravity, Nucl. Phys.B 226 (1983) 49 [INSPIRE].

    Article  ADS  Google Scholar 

  40. S. Gates, M.T. Grisaru, M. Roček and W. Siegel, Superspace or one thousand and one lessons in supersymmetry, Front. Phys.58 (1983) 1 [hep-th/0108200] [INSPIRE].

    MATH  Google Scholar 

  41. P.S. Howe and R. Tucker, Scale invariance in superspace, Phys. Lett.B 80 (1978) 138 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. B.J. Warr, Renormalization of gauge theories using effective Lagrangians. 1., Annals Phys.183 (1988) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  43. B.J. Warr, Renormalization of gauge theories using effective Lagrangians. 2., Annals Phys.183 (1988) 59 [INSPIRE].

    Article  ADS  Google Scholar 

  44. K. Konishi, Anomalous supersymmetry transformation of some composite operators in SQCD, Phys. Lett.B 135 (1984) 439 [INSPIRE].

    Article  ADS  Google Scholar 

  45. T. Clark, O. Piguet and K. Sibold, The Absence of Radiative Corrections to the Axial Current Anomaly in Supersymmetric QED, Nucl. Phys.B 159 (1979) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  46. M.K. Gaillard, Pauli-Villars regularization of globally supersymmetric theories, Phys. Lett.B 347 (1995) 284 [hep-th/9412125] [INSPIRE].

    Article  ADS  Google Scholar 

  47. C. Cheung, F. D’Eramo and J. Thaler, Supergravity computations without gravity complications, Phys. Rev.D 84 (2011) 085012 [arXiv:1104.2598] [INSPIRE].

    ADS  Google Scholar 

  48. D. Baumann and D. Green, Supergravity for effective theories, JHEP03 (2012) 001 [arXiv:1109.0293] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  49. B. de Wit and I. Herger, Anti-de Sitter supersymmetry, Lect. Notes Phys.541 (2000) 79 [hep-th/9908005] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  50. B. Keck, An alternative class of supersymmetries, J. Phys.A 8 (1975) 1819 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  51. B. Zumino, Nonlinear realization of supersymmetry in de Sitter space, Nucl. Phys.B 127 (1977) 189 [INSPIRE].

    Article  ADS  Google Scholar 

  52. E. Ivanov and A.S. Sorin, Superfield formulation of OSP(1, 4) supersymmetry, J. Phys.A 13 (1980) 1159 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  53. A. Lahanas and D.V. Nanopoulos, The road to no scale supergravity, Phys. Rept.145 (1987) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  54. M.A. Luty and N. Okada, Almost no scale supergravity, JHEP04 (2003) 050 [hep-th/0209178] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. M. Kaku, P. Townsend and P. van Nieuwenhuizen, Gauge theory of the conformal and superconformal group, Phys. Lett.B 69 (1977) 304 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. M. Kaku and P. Townsend, Poincaré supergravity as broken superconformal gravity, Phys. Lett.B 76 (1978) 54 [INSPIRE].

    Article  ADS  Google Scholar 

  57. M. Kaku, P. Townsend and P. van Nieuwenhuizen, Properties of conformal supergravity, Phys. Rev.D 17 (1978) 3179 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  58. P. Townsend and P. van Nieuwenhuizen, Simplifications of Conformal Supergravity, Phys. Rev.D 19 (1979) 3166 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  59. T. Kugo and S. Uehara, Improved Superconformal Gauge Conditions in the N = 1 Supergravity Yang-Mills Matter System, Nucl. Phys.B 222 (1983) 125 [INSPIRE].

    Article  ADS  Google Scholar 

  60. H.K. Dreiner, H.E. Haber and S.P. Martin, Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry, Phys. Rept.494 (2010) 1 [arXiv:0812.1594] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoe Thomas.

Additional information

ArXiv ePrint: 1307.3251

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Eramo, F., Thaler, J. & Thomas, Z. Anomaly mediation from unbroken supergravity. J. High Energ. Phys. 2013, 125 (2013). https://doi.org/10.1007/JHEP09(2013)125

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2013)125

Keywords

Navigation