Skip to main content
Log in

Charged dilatonic ads black holes and magnetic AdS D−2 × R 2 vacua

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider D-dimensional Einstein gravity coupled to two U(1) fields and a dilaton with a scalar potential. We derive the condition that the analytical AdS black holes with two independent charges can be constructed. Turning off the cosmological constant, the extremal Reissner-Nordstrøm black hole emerges as the harmonic superposition of the two U(1) building blocks. With the non-vanishing cosmological constant, our extremal solutions contain the near-horizon geometry of AdS2 ×R D−2 with or without a hyperscaling. We also obtain the magnetic \( \mathrm{Ad}{{\mathrm{S}}_{D-2 }}\times {{\mathcal{Y}}^2} \) vacua where \( {{\mathcal{Y}}^2} \) can be R 2, S 2 or hyperbolic 2-space. These vacua arise as the fix points of some super potentials and recover the known supersymmetric vacua when the theory can be embedded in gauged supergravities. The AdSD−2 × R 2 vacua are of particular interest since they are dual to some quantum field theories at the lowest Landau level. By studying the embedding of some of these solutions in the string and M-theory, we find that the M2/M5-system with the equal M2 and M5 charges can intersect with another such M2/M5 on to a dyonic black hole. Analogous intersection rule applies also to the D1/D5-system. The intersections are non-supersymmetric but in the manner of harmonic superpositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Behrndt, M. Cvetič and W.A. Sabra, Nonextreme black holes of five-dimensional N = 2 AdS supergravity, Nucl. Phys. B 553 (1999) 317 [hep-th/9810227] [INSPIRE].

    Article  ADS  Google Scholar 

  2. M.J. Duff and J.T. Liu, Anti-de Sitter black holes in gauged N = 8 supergravity, Nucl. Phys. B 554 (1999) 237 [hep-th/9901149] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].

    Article  ADS  Google Scholar 

  4. M. Cvetič, H. Lü and C. Pope, Gauged six-dimensional supergravity from massive type IIA, Phys. Rev. Lett. 83 (1999) 5226 [hep-th/9906221] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. D. Klemm and O. Vaughan, Nonextremal black holes in gauged supergravity and the real formulation of special geometry, JHEP 01 (2013) 053 [arXiv:1207.2679] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. D. Klemm and O. Vaughan, Nonextremal black holes in gauged supergravity and the real formulation of special geometry II, Class. Quant. Grav. 30 (2013) 065003 [arXiv:1211.1618] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. Z.-W. Chong, M. Cvetič, H. Lü and C. Pope, General non-extremal rotating black holes in minimal five-dimensional gauged supergravity, Phys. Rev. Lett. 95 (2005) 161301 [hep-th/0506029] [INSPIRE].

    Article  ADS  Google Scholar 

  8. S.-Q. Wu, General nonextremal rotating charged AdS black holes in five-dimensional U(1)3 gauged supergravity: a simple construction method, Phys. Lett. B 707 (2012) 286 [arXiv:1108.4159] [INSPIRE].

    ADS  Google Scholar 

  9. Z.-W. Chong, M. Cvetič, H. Lü and C. Pope, Charged rotating black holes in four-dimensional gauged and ungauged supergravities, Nucl. Phys. B 717 (2005) 246 [hep-th/0411045] [INSPIRE].

    Article  ADS  Google Scholar 

  10. D.D. Chow, Equal charge black holes and seven dimensional gauged supergravity, Class. Quant. Grav. 25 (2008) 175010 [arXiv:0711.1975] [INSPIRE].

    Article  ADS  Google Scholar 

  11. D.D. Chow, Charged rotating black holes in six-dimensional gauged supergravity, Class. Quant. Grav. 27 (2010) 065004 [arXiv:0808.2728] [INSPIRE].

    Article  ADS  Google Scholar 

  12. J. Rahmfeld, Extremal black holes as bound states, Phys. Lett. B 372 (1996) 198 [hep-th/9512089] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. A.A. Tseytlin, Harmonic superpositions of M-branes, Nucl. Phys. B 475 (1996) 149 [hep-th/9604035] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. H. Lü and Z.-L. Wang, Pseudo-Killing spinors, pseudo-supersymmetric p-branes, bubbling and less-bubbling AdS spaces, JHEP 06 (2011) 113 [arXiv:1103.0563] [INSPIRE].

    Article  ADS  Google Scholar 

  15. H. Lü, C. Pope and Z.-L. Wang, Pseudo-supersymmetry, consistent sphere reduction and Killing spinors for the bosonic string, Phys. Lett. B 702 (2011) 442 [arXiv:1105.6114] [INSPIRE].

    Article  ADS  Google Scholar 

  16. H. Lü and Z.-L. Wang, Killing Spinors for the Bosonic String, Europhys. Lett. 97 (2012) 50010 [arXiv:1106.1664] [INSPIRE].

    Article  Google Scholar 

  17. H. Liu, H. Lü and Z.-L. Wang, Killing spinors for the bosonic string and the Kaluza-Klein theory with scalar potentials, Eur. Phys. J. C 72 (2012) 1853 [arXiv:1106.4566] [INSPIRE].

    Article  ADS  Google Scholar 

  18. H. Lü, C.N. Pope and Z.-L. Wang, Pseudo-supergravity extension of the bosonic string, Nucl. Phys. B 854 (2012) 293 [arXiv:1106.5794] [INSPIRE].

    Article  ADS  Google Scholar 

  19. H.-S. Liu, H. Lü, Z.-L. Wang, H. Lü and Z.-L. Wang, Gauged Kaluza-Klein AdS pseudo-supergravity, Phys. Lett. B 703 (2011) 524 [arXiv:1107.2659] [INSPIRE].

    Article  ADS  Google Scholar 

  20. D.D. Chow, Single-rotation two-charge black holes in gauged supergravity, arXiv:1108.5139 [INSPIRE].

  21. S.-Q. Wu, General rotating charged Kaluza-Klein AdS black holes in higher dimensions, Phys. Rev. D 83 (2011) 121502 [arXiv:1108.4157] [INSPIRE].

    ADS  Google Scholar 

  22. K.C.K. Chan, J.H. Horne and R.B. Mann, Charged dilaton black holes with unusual asymptotics, Nucl. Phys. B 447 (1995) 441 [gr-qc/9502042] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. H. Lü, C.N. Pope, E. Sezgin and K. Stelle, Stainless super p-branes, Nucl. Phys. B 456 (1995) 669 [hep-th/9508042] [INSPIRE].

    Article  ADS  Google Scholar 

  24. T. Ortin, Gravity and strings, Cambridge University Press, Cambridge U.K. (2004).

    Book  MATH  Google Scholar 

  25. A. Almuhairi and J. Polchinski, Magnetic AdS ×R 2 : supersymmetry and stability, arXiv:1108.1213 [INSPIRE].

  26. H. Lü, C. Pope and K. Xu, Liouville and Toda solutions of M-theory, Mod. Phys. Lett. A 11 (1996) 1785 [hep-th/9604058] [INSPIRE].

    Article  ADS  Google Scholar 

  27. H. Lü and W. Yang, SL(n, R)-Toda black holes, arXiv:1307.2305 [INSPIRE].

  28. R.L. Arnowitt, S. Deser and C.W. Misner, Dynamical structure andl definition of energy in general relativity, Phys. Rev. 116 (1959) 1322 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. M. Cvetič and D. Youm, Entropy of nonextreme charged rotating black holes in string theory, Phys. Rev. D 54 (1996) 2612 [hep-th/9603147] [INSPIRE].

    ADS  Google Scholar 

  30. F. Larsen, A String model of black hole microstates, Phys. Rev. D 56 (1997) 1005 [hep-th/9702153] [INSPIRE].

    ADS  Google Scholar 

  31. M. Cvetič and F. Larsen, General rotating black holes in string theory: grey body factors and event horizons, Phys. Rev. D 56 (1997) 4994 [hep-th/9705192] [INSPIRE].

    ADS  Google Scholar 

  32. M. Cvetič and F. Larsen, Grey body factors for rotating black holes in four-dimensions, Nucl. Phys. B 506 (1997) 107 [hep-th/9706071] [INSPIRE].

    Article  ADS  Google Scholar 

  33. Y.-X. Chen, H. Lü and K.-N. Shao, Linearized modes in extended and critical gravities, Class. Quant. Grav. 29 (2012) 085017 [arXiv:1108.5184] [INSPIRE].

    Article  ADS  Google Scholar 

  34. H. Lü and K.-N. Shao, Solutions of free higher spins in AdS, Phys. Lett. B 706 (2011) 106 [arXiv:1110.1138] [INSPIRE].

    Article  ADS  Google Scholar 

  35. P. Townsend and P. van Nieuwenhuizen, Gauged seven-dimensional supergravity, Phys. Lett. B 125 (1983) 41 [INSPIRE].

    Article  ADS  Google Scholar 

  36. L. Romans, The F (4) gauged supergravity in six-dimensions, Nucl. Phys. B 269 (1986) 691 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. H. Lü, C. Pope, E. Sezgin and K. Stelle, Dilatonic p-brane solitons, Phys. Lett. B 371 (1996) 46 [hep-th/9511203] [INSPIRE].

    Article  ADS  Google Scholar 

  38. M. Bremer, M. Duff, H. Lü, C. Pope and K. Stelle, Instanton cosmology and domain walls from M-theory and string theory, Nucl. Phys. B 543 (1999) 321 [hep-th/9807051] [INSPIRE].

    Article  ADS  Google Scholar 

  39. H. Liu, H. Lü and Z.-L. Wang, f (R) theories of supergravities and pseudo-supergravities, JHEP 04 (2012) 072 [arXiv:1201.2417] [INSPIRE].

    Article  ADS  Google Scholar 

  40. W. Chen, H. Lü and C. Pope, Mass of rotating black holes in gauged supergravities, Phys. Rev. D 73 (2006) 104036 [hep-th/0510081] [INSPIRE].

    ADS  Google Scholar 

  41. A. Ashtekar and A. Magnon, Asymptotically Anti-de Sitter space-times, Class. Quant. Grav. 1 (1984) L39 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. A. Ashtekar and S. Das, Asymptotically Anti-de Sitter space-times: conserved quantities, Class. Quant. Grav. 17 (2000) L17 [hep-th/9911230] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. L. Romans, Supersymmetric, cold and lukewarm black holes in cosmological Einstein-Maxwell theory, Nucl. Phys. B 383 (1992) 395 [hep-th/9203018] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. N. Alonso-Alberca, P. Meessen and T. Ortín, Supersymmetry of topological Kerr-Newman-Taub-NUT-AdS space-times, Class. Quant. Grav. 17 (2000) 2783 [hep-th/0003071] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  45. H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. Z.-W. Chong, H. Lü and C. Pope, BPS geometries and AdS bubbles, Phys. Lett. B 614 (2005) 96 [hep-th/0412221] [INSPIRE].

    Article  ADS  Google Scholar 

  47. J.B. Gutowski and H.S. Reall, Supersymmetric AdS 5 black holes, JHEP 02 (2004) 006 [hep-th/0401042] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. S.L. Cacciatori and D. Klemm, Supersymmetric AdS 4 black holes and attractors, JHEP 01 (2010) 085 [arXiv:0911.4926] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. C. Toldo and S. Vandoren, Static nonextremal AdS 4 black hole solutions, JHEP 09 (2012) 048 [arXiv:1207.3014] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. M. Cvetič, G. Gibbons and C. Pope, Universal area product formulae for rotating and charged black holes in four and higher dimensions, Phys. Rev. Lett. 106 (2011) 121301 [arXiv:1011.0008] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. S.S. Gubser and J. Ren, Analytic fermionic Greens functions from holography, Phys. Rev. D 86 (2012) 046004 [arXiv:1204.6315] [INSPIRE].

    ADS  Google Scholar 

  52. J. Bhattacharya, S. Cremonini and A. Sinkovics, On the IR completion of geometries with hyperscaling violation, JHEP 02 (2013) 147 [arXiv:1208.1752] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. A. Das, M. Fischler and M. Roček, Super-Higgs effect in a new class of scalar models and a model of super QED, Phys. Rev. D 16 (1977) 3427 [INSPIRE].

    ADS  Google Scholar 

  54. G. Gibbons and D. Wiltshire, Black holes in Kaluza-Klein theory, Annals Phys. 167 (1986) 201 [Erratum ibid. 176 (1987) 393] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. M. Cvetič, H. Lü and C. Pope, Four-dimensional N = 4, SO(4) gauged supergravity from D=11,Nucl. Phys. B 574 (2000) 761 [hep-th/9910252] [INSPIRE].

    Article  ADS  Google Scholar 

  56. S. Cucu, H. Lü and J.F. Vázquez-Poritz, A supersymmetric and smooth compactification of M-theory to AdS 5, Phys. Lett. B 568 (2003) 261 [hep-th/0303211] [INSPIRE].

    Article  ADS  Google Scholar 

  57. S. Cucu, H. Lü and J.F. Vázquez-Poritz, Interpolating from AdS D−2 × S 2 to AdS D , Nucl. Phys. B 677 (2004) 181 [hep-th/0304022] [INSPIRE].

    Article  ADS  Google Scholar 

  58. A. Almuhairi, AdS 3 and AdS 2 magnetic brane solutions, arXiv:1011.1266 [INSPIRE].

  59. M.T. Anderson, C. Beem, N. Bobev and L. Rastelli, Holographic uniformization, Commun. Math. Phys. 318 (2013) 429 [arXiv:1109.3724] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].

    Article  ADS  Google Scholar 

  61. S. Cacciatori, D. Klemm and D. Zanon, W algebras, conformal mechanics and black holes, Class. Quant. Grav. 17 (2000) 1731 [hep-th/9910065] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. D. Klemm and W. Sabra, Supersymmetry of black strings in D = 5 gauged supergravities, Phys. Rev. D 62 (2000) 024003 [hep-th/0001131] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Lü.

Additional information

ArXiv ePrint: 1306.2386

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lü, H. Charged dilatonic ads black holes and magnetic AdS D−2 × R 2 vacua. J. High Energ. Phys. 2013, 112 (2013). https://doi.org/10.1007/JHEP09(2013)112

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2013)112

Keywords

Navigation