Skip to main content
Log in

Scattering by a long-range potential

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The phenomenon of wave tails has attracted much attention over the years from both physicists and mathematicians. However, our understanding of this fascinating phenomenon is not complete yet. In particular, most former studies of the tail phenomenon have focused on scattering potentials which approach zero asymptotically (x → ∞) faster than x −2. It is well-known that for these (rapidly decaying) scattering potentials the late-time tails are determined by the first Born approximation and are therefore linear in the amplitudes of the scattering potentials (there are, however, some exceptional cases in which the first Born approximation vanishes and one has to consider higher orders of the scattering problem). In the present study we analyze in detail the late-time dynamics of the Klein-Gordon wave equation with a (slowly decaying) Coulomb-like scattering potential: V (x → ∞) = α/x. In particular, we write down an explicit solution (that is, an exact analytic solution which is not based on the first Born approximation) for this scattering problem. It is found that the asymptotic (t → ∞) late-time behavior of the fields depends non-linearly on the amplitude α of the scattering potential. This non-linear dependence on the amplitude of the scattering potential reflects the fact that the late-time dynamics associated with this slowly decaying scattering potential is dominated by multiple scattering from asymptotically far regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.H. Price, Nonspherical perturbations of relativistic gravitational collapse. 1. Scalar and gravitational perturbations, Phys. Rev. D 5 (1972) 2419 [INSPIRE].

    ADS  Google Scholar 

  2. J. Bičák, Gravitational collapse with charge and small asymmetries, I: scalar perturbations, Gen. Rel. Grav. 3 (1972) 331.

    Article  ADS  Google Scholar 

  3. Y. Sun and R. Price, Excitation of quasinormal ringing of a Schwarzschild black hole, Phys. Rev. D 38 (1988) 1040 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. C. Gundlach, R.H. Price and J. Pullin, Late time behavior of stellar collapse and explosions: 1. Linearized perturbations, Phys. Rev. D 49 (1994) 883 [gr-qc/9307009] [INSPIRE].

    ADS  Google Scholar 

  5. S. Hod and T. Piran, Late time evolution of charged gravitational collapse and decay of charged scalar hair. 1, Phys. Rev. D 58 (1998) 024017 [gr-qc/9712041] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. S. Hod and T. Piran, Late time evolution of charged gravitational collapse and decay of charged scalar hair. 2, Phys. Rev. D 58 (1998) 024018 [gr-qc/9801001] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. S. Hod and T. Piran, Late time tails in gravitational collapse of a selfinteracting (massive) scalar field and decay of a selfinteracting scalar hair, Phys. Rev. D 58 (1998) 044018 [gr-qc/9801059] [INSPIRE].

    ADS  Google Scholar 

  8. S. Hod and T. Piran, Late time evolution of charged gravitational collapse and decay of charged scalar hair. 3. Nonlinear analysis, Phys. Rev. D 58 (1998) 024019 [gr-qc/9801060] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. S. Hod, Late time evolution of realistic rotating collapse and the no hair theorem, Phys. Rev. D 58 (1998) 104022 [gr-qc/9811032] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. P.R. Brady, C.M. Chambers, W.G. Laarakkers and E. Poisson, Radiative falloff in Schwarzschild-de Sitter space-time, Phys. Rev. D 60 (1999) 064003 [gr-qc/9902010] [INSPIRE].

    ADS  Google Scholar 

  11. R.-G. Cai and A. Wang, Late time evolution of the Yang-Mills field in the spherically symmetric gravitational collapse, Gen. Rel. Grav. 31 (1999) 1367 [gr-qc/9910067] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. S. Hod, High order contamination in the tail of gravitational collapse, Phys. Rev. D 60 (1999) 104053 [gr-qc/9907044] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. S. Hod, Mode coupling in rotating gravitational collapse of a scalar field, Phys. Rev. D 61 (2000) 024033 [gr-qc/9902072] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  14. S. Hod, Mode coupling in realistic rotating gravitational collapse, gr-qc/9902073 [INSPIRE].

  15. L. Barack, Late time decay of scalar, electromagnetic and gravitational perturbations outside rotating black holes, Phys. Rev. D 61 (2000) 024026 [gr-qc/9908005] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  16. E. Malec, Diffusion of the electromagnetic energy due to the backscattering off Schwarzschild geometry, Phys. Rev. D 62 (2000) 084034 [gr-qc/0005130] [INSPIRE].

    ADS  Google Scholar 

  17. S. Hod, The radiative tail of realistic gravitational collapse, Phys. Rev. Lett. 84 (2000) 10 [gr-qc/9907096] [INSPIRE].

    Article  ADS  Google Scholar 

  18. W.G. Laarakkers and E. Poisson, Radiative falloff in Einstein-Straus space-time, Phys. Rev. D 64 (2001) 084008 [gr-qc/0105016] [INSPIRE].

    ADS  Google Scholar 

  19. S. Hod, How pure is the tail of gravitational collapse?, Class. Quant. Grav. 26 (2009) 028001 [arXiv:0902.0237] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. J.-l. Jing, Late-time behavior of massive Dirac fields in a Schwarzschild background, Phys. Rev. D 70 (2004) 065004 [gr-qc/0405122] [INSPIRE].

    ADS  Google Scholar 

  21. X. He and J. Jing, Late-time evolution of charged massive Dirac fields in the Kerr-Newman background, Nucl. Phys. B 755 (2006) 313 [gr-qc/0611003] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. B. Wang, C. Molina and E. Abdalla, Evolving of a massless scalar field in Reissner-Nordstrom Anti-de Sitter space-times, Phys. Rev. D 63 (2001) 084001 [hep-th/0005143] [INSPIRE].

    ADS  Google Scholar 

  23. R. Konoplya and A. Zhidenko, Quasinormal modes of black holes: from astrophysics to string theory, Rev. Mod. Phys. 83 (2011) 793 [arXiv:1102.4014] [INSPIRE].

    Article  ADS  Google Scholar 

  24. J. Gleiser, R.H. Price and J. Pullin, Late time tails in the Kerr spacetime, Class. Quant. Grav. 25 (2008) 072001 [arXiv:0710.4183] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. M. Tiglio, L.E. Kidder and S.A. Teukolsky, High accuracy simulations of Kerr tails: Coordinate dependence and higher multipoles, Class. Quant. Grav. 25 (2008) 105022 [arXiv:0712.2472] [INSPIRE].

    Article  ADS  Google Scholar 

  26. R. Moderski and M. Rogatko, Late time evolution of a selfinteracting scalar field in the space-time of dilaton black hole, Phys. Rev. D 64 (2001) 044024 [gr-qc/0105056] [INSPIRE].

    ADS  Google Scholar 

  27. P. Bizon, T. Chmaj and A. Rostworowski, Anomalously small wave tails in higher dimensions, Phys. Rev. D 76 (2007) 124035 [arXiv:0708.1769] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  28. R. Moderski and M. Rogatko, Decay of Dirac massive hair in the background of spherical black hole, Phys. Rev. D 77 (2008) 124007 [arXiv:0805.0665] [INSPIRE].

    ADS  Google Scholar 

  29. B. Wang, C.-Y. Lin and C. Molina, Quasinormal behavior of massless scalar field perturbation in Reissner-Nordstrom Anti-de Sitter spacetimes, Phys. Rev. D 70 (2004) 064025 [hep-th/0407024] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. E. Abdalla, B. Cuadros-Melgar, A. Pavan and C. Molina, Stability and thermodynamics of brane black holes, Nucl. Phys. B 752 (2006) 40 [gr-qc/0604033] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. X. He, B. Wang, S.-F. Wu and C.-Y. Lin, Quasinormal modes of black holes absorbing dark energy, Phys. Lett. B 673 (2009) 156 [arXiv:0901.0034] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. K.S. Thorne, Nonspherical gravitational collapseA short review, in Magic without magic: John Archibald Wheeler, J. Klauder ed, W.H. Freeman, San Francisco U.S.A. (1972).

  33. E. Ching, P. Leung, W. Suen and K. Young, Late time tail of wave propagation on curved space-time, Phys. Rev. Lett. 74 (1995) 2414 [gr-qc/9410044] [INSPIRE].

    Article  ADS  Google Scholar 

  34. E. Ching, P. Leung, W. Suen and K. Young, Wave propagation in gravitational systems: Late time behavior, Phys. Rev. D 52 (1995) 2118 [gr-qc/9507035] [INSPIRE].

    ADS  Google Scholar 

  35. S. Hod, Wave tails in non-trivial backgrounds, Class. Quant. Grav. 18 (2001) 1311 [gr-qc/0008001] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. S. Hod, Wave tails in time dependent backgrounds, Phys. Rev. D 66 (2002) 024001 [gr-qc/0201017] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  37. P.M. Morse and H. Feshbach, Methods of theoretical physics, McGraw-Hill, U.S.A. (1953).

    MATH  Google Scholar 

  38. E.W. Leaver, Spectral decomposition of the perturbation response of the Schwarzschild geometry, Phys. Rev. D 34 (1986) 384 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  39. N. Andersson, Evolving test fields in a black hole geometry, Phys. Rev. D 55 (1997) 468 [gr-qc/9607064] [INSPIRE].

    ADS  Google Scholar 

  40. M. Abramowitz and I.A. Stegun, Handbook of mathematical functions, Dover Publications, New York U.S.A. (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahar Hod.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hod, S. Scattering by a long-range potential. J. High Energ. Phys. 2013, 56 (2013). https://doi.org/10.1007/JHEP09(2013)056

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2013)056

Keywords

Navigation