Skip to main content
Log in

On topological field theory representation of higher analogs of classical special functions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Looking for a quantum field theory model of Archimedean algebraic geometry a class of infinite-dimensional integral representations of classical special functions was introduced. Precisely the special functions such as Whittaker functions and Γ-function were identified with correlation functions in topological field theories on a two-dimensional disk. Mirror symmetry of the underlying topological field theory leads to a dual finite-dimensional integral representations reproducing classical integral representations for the corresponding special functions. The mirror symmetry interchanging infinite- and finite-dimensional integral representations provides an incarnation of the local Archimedean Langlands duality on the level of classical special functions.

In this note we provide some directions to higher-dimensional generalizations of our previous results. In the first part we consider topological field theory representations of multiple local L-factors introduced by Kurokawa and expressed through multiple Barnes’s Γ-functions. In the second part we are dealing with generalizations based on consideration of topological Yang-Mills theories on non-compact four-dimensional manifolds. Presumably, in analogy with the mirror duality in two-dimensions, S-dual description should be instrumental for deriving integral representations for a particular class of quantum field theory correlation functions and thus providing a new interesting class of special functions supplied with canonical integral representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Aganagic and C. Vafa, Perturbative derivation of mirror symmetry, hep-th/0209138 [SPIRES].

  2. L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. D.M. Austin and P.J. Braam, Morse-Bott theory and equivariant cohomology, in The Floer Memorial Volume, H. Hofer et al. eds., Springer, U.S.A. (1995).

    Google Scholar 

  4. E.W. Barnes, On the theory of the multiple gamma functions, Trans. Cambridge Philos. Soc. 19 (1904) 374.

    Google Scholar 

  5. A. Braverman and P. Etingof, Instanton counting via affine Lie algebras. II. From Whittaker vectors to the Seiberg-Witten prepotential, math/0409441.

  6. D. Bump, Automorphic forms and representations, Cambridge University Press, Cambridge U.K. (1998).

    Google Scholar 

  7. R.L. Cohen, J.D.S. Jones and G.B. Segal, Floer’s infinite dimensional Morse theory and homotopy theory, in The Floer Memorial Volume, H. Hofer et al. eds., Springer, U.S.A. (1995).

    Google Scholar 

  8. F.A. Dolan and H. Osborn, Applications of the superconformal index for protected operators and q-hypergeometric identities to N = 1 dual theories, Nucl. Phys. B 818 (2009) 137 [arXiv:0801.4947] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  9. S.K. Donaldson and P.B. Kronheimer, The geometry of four-manifolds, ClarendonPress, Oxford U.K. (1990).

    MATH  Google Scholar 

  10. J.J. Duistermaat and G.J. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math. 69 (1982) 259.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. A. Floer, An instanton invariants for 3-manifolds, Commun. Math. Phys. 118 (1988) 215.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. D. Gaiotto and E. Witten, Supersymmetric boundary conditions in N = 4 super Yang-Mills theory, arXiv:0804.2902 [SPIRES].

  13. A. Gerasimov, S. Kharchev and D. Lebedev, Representation theory and quantum inverse scattering method: the open Toda chain and the hyperbolic Sutherland model, Int. Math. Res. Not. 17 (2004) 823 [math/0204206].

    Article  MathSciNet  Google Scholar 

  14. A. Gerasimov, S. Kharchev, D. Lebedev and S. Oblezin, On a Gauss-Givental representation of quantum Toda chain wave function, Int. Math. Res. Not. 2006 (2006) 1 [math/0505310].

    MathSciNet  Google Scholar 

  15. A. Gerasimov, D. Lebedev and S. Oblezin, On q-deformed \( \mathfrak{g}{\mathfrak{l}_{\ell + 1}} \) -Whittaker functions I, Commun. Math. Phys. 294 (2010) 97 [arXiv:0803.0145].

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Gerasimov, D. Lebedev and S. Oblezin, On q-deformed \( \mathfrak{g}{\mathfrak{l}_{\ell + 1}} \) -Whittaker functions II, Commun. Math. Phys. 294 (2010) 121 [arXiv:0803.0970].

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Gerasimov, D. Lebedev and S. Oblezin, On q-deformed \( \mathfrak{g}{\mathfrak{l}_{\ell + 1}} \) -Whittaker functions III, Lett. Math. Phys. 294 (2010) 1 [arXiv:0803.3754].

    Google Scholar 

  18. A. Gerasimov, D. Lebedev and S. Oblezin, Archimedean L-factors and topological field theories I, Commun. Number Theor. Phys. 5 (2011) [arXiv:0906.1065] [SPIRES].

  19. A. Gerasimov, D. Lebedev and S. Oblezin, Archimedean L-factors and Topological Field Theories II, Commun. Number Theor. Phys. 5 (2011) arXiv:0909.2016 [SPIRES].

  20. A. Gerasimov, D. Lebedev and S. Oblezin, Parabolic W hittaker functions and topological field theories I, Commun. Number Theor. Phys. 5 (2011) [arXiv:1002.2622] [SPIRES].

  21. A. Gerasimov, D. Lebedev and S. Oblezin, From Archimedean L-factors to topological field theories, Lett. Math. Phys. 96 (2011) 285 [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. A. Gerasimov, A quantum field theory model of archimedean geometry, talk given at Rencontres Itzykson 2010: New trends in quantum integrability, June 21–23, IPhT Saclay, France (2010).

  23. A.A. Gerasimov and D.R. Lebedev, Representation theory over tropical semifield and Langlands correspondence, arXiv:1011.2462.

  24. A.A. Gerasimov and S.L. Shatashvili, Higgs bundles, gauge theories and quantum groups, Commun. Math. Phys. 277 (2008) 323 [hep-th/0609024] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. A.A. Gerasimov and S.L. Shatashvili, Two-dimensional gauge theories and quantum integrable systems, in From Hodge theory to integrability and TQFT: tt * -geometry, R. Donagi and K. Wendland eds., American mathematical Society, U.S.A. (2007), arXiv:0711.1472 [SPIRES].

    Google Scholar 

  26. A. Givental, Homological geometry I. Projective hypersurfaces, Sel. Math. New Ser. 1 (1995) 325.

    Article  MATH  MathSciNet  Google Scholar 

  27. A. Givental, Equivariant Gromov-Witten invariants, Int. Math. Res. Not. 13 (1996) 613 [alg-geom/9603021].

    Article  MathSciNet  Google Scholar 

  28. A. Givental, Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture, in Topics in singularity theory, A. Khovanskii et al. eds., American Mathematical Society, U.S.A. (1997), alg-geom/9612001.

    Google Scholar 

  29. A. Jaffe and C. Taubes, Vortices and monopoles, Springer, USA (1980).

    MATH  Google Scholar 

  30. S. Kharchev and D. Lebedev, Eigenfunctions of GL (N, R) Toda chain: The Mellin-Barnes representation, Pisma Zh. Eksp. Teor. Fiz. 71 (2000) 338 [hep-th/0004065] [SPIRES].

    Google Scholar 

  31. J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. M. Kontsevich, Enumeration of rational curves via torus actions, hep-th/9405035 [SPIRES].

  33. N. Kurokawa, Multiple sine functions and Selberg zeta functions, Proc. Japan Acad. 67A (1991) 61.

    MathSciNet  Google Scholar 

  34. N. Kurokawa, Multiple zeta functions: an example, Adv. Stud. Pure Math. 21 (1992) 219.

    MathSciNet  Google Scholar 

  35. J. Bernstein and S. Gelbart, An introduction to the Langlands program, lectures presented at the Hebrew University of Jerusalem, Jerusalem, March 12–16 (2001), Springer, U.S.A. (2003).

  36. A. Lossev, N. Nekrasov and S.L. Shatashvili, Testing Seiberg-W itten solution, hep-th/9801061 [SPIRES].

  37. Yu.I. Manin, Lectures on zeta functions and motives (according to Deninger and Kurokawa), Astérisque 228 (1995) 121.

    MathSciNet  Google Scholar 

  38. G.W. Moore, N. Nekrasov and S. Shatashvili, Integrating over Higgs branches, Commun. Math. Phys. 209 (2000) 97 [hep-th/9712241] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. H. Nakajima and K. Yoshioka, Lectures on instanton counting, math/0311058.

  40. N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [SPIRES].

    MathSciNet  Google Scholar 

  41. N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, hep-th/0306238 [SPIRES].

  42. N.A. Nekrasov and S.L. Shatashvili, Quantization of integrable systems and four dimensional gauge theories, arXiv:0908.4052 [SPIRES].

  43. N. Nekrasov and E. Witten, The ω deformation, branes, integrability and Liouville theory, JHEP 09 (2010) 092 [arXiv:1002.0888] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  44. N. Seiberg and E. Witten, Monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  45. C. Romelsberger, Counting chiral primaries in N = 1, D = 4 superconformal field theories, Nucl. Phys. B 747 (2006) 329 [hep-th/0510060] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  46. C. Romelsberger, Calculating the superconformal index and Seiberg duality, arXiv:0707.3702 [SPIRES].

  47. S. Shadchin, On F-term contribution to effective action, JHEP 08 (2007) 052 [hep-th/0611278] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  48. V.P. Spiridonov, Essays on the theory of elliptic hypergeometric functions, Russian Math. Surveys 63 (2008) 405 [arXiv:0805.3135].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  49. V.P. Spiridonov and G.S. Vartanov, Elliptic hypergeometry of supersymmetric dualities, Commun. Math. Phys. 304 (2011) 797 [arXiv:0910.5944] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  50. E. Witten, Topological quantum field theory, Commun. Math. Phys. 117 (1988) 353 [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. E. Witten, Monopoles and four manifolds, Math. Res. Lett. 1 (1994) 769 [hep-th/9411102] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  52. E. Witten, A new look at the path integral of quantum mechanics, arXiv:1009.6032 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton A. Gerasimov.

Additional information

ArXiv ePrint: 1011.0403

Extended version of a talk given by the first author at Quantum field theory and representation theory, October, 2010, Moscow, Russia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerasimov, A.A., Lebedev, D.R. On topological field theory representation of higher analogs of classical special functions. J. High Energ. Phys. 2011, 76 (2011). https://doi.org/10.1007/JHEP09(2011)076

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2011)076

Keywords

Navigation