Skip to main content
Log in

Canonical gauge coupling unification in the standard model with high-scale supersymmetry breaking

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Inspired by the string landscape and the unified gauge coupling relation in the F-theory Grand Unified Theories (GUTs) and GUTs with suitable high-dimensional operators, we study the canonical gauge coupling unification and Higgs boson mass in the Standard Model (SM) with high-scale supersymmetry breaking. In the SM with GUT-scale supersymmetry breaking, we achieve the gauge coupling unification at about 5.3 × 1013 GeV, and the Higgs boson mass is predicted to range from 130 GeV to 147 GeV. In the SM with supersymmetry breaking scale from 104 GeV to 5.3 × 1013 GeV, gauge coupling unification can always be realized and the corresponding GUT scale M U is from 1016 GeV to 5.3 × 1013 GeV, respectively. Also, we obtain the Higgs boson mass from 114.4 GeV to 147 GeV. Moreover, the discrepancies among the SM gauge couplings at the GUT scale are less than about 4-6%. Furthermore, we present the SU(5) and SO(10) models from the F-theory model building and orbifold constructions, and show that we do not have the dimension-five and dimension-six proton decay problems even if M U  ≤ 5 × 1015 GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Bousso and J. Polchinski, Quantization of four-form fluxes and dynamical neutralization of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  2. S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  3. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  4. L. Susskind, The anthropic landscape of string theory, hep-th/0302219 [SPIRES].

  5. F. Denef and M.R. Douglas, Distributions of flux vacua, JHEP 05 (2004) 072 [hep-th/0404116] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  6. F. Denef and M.R. Douglas, Distributions of nonsupersymmetric flux vacua, JHEP 03 (2005) 061 [hep-th/0411183] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  7. S. Weinberg, Anthropic Bound on the Cosmological Constant, Phys. Rev. Lett. 59 (1987) 2607 [SPIRES].

    Article  ADS  Google Scholar 

  8. A. Giryavets, S. Kachru and P.K. Tripathy, On the taxonomy of flux vacua, JHEP 08 (2004) 002 [hep-th/0404243] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  9. L. Susskind, Supersymmetry breaking in the anthropic landscape, hep-th/0405189 [SPIRES].

  10. M.R. Douglas, Statistical analysis of the supersymmetry breaking scale, hep-th/0405279 [SPIRES].

  11. M.R. Douglas, Basic results in vacuum statistics, Comptes Rendus Physique 5 (2004) 965 [hep-th/0409207] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  12. M. Dine, E. Gorbatov and S.D. Thomas, Low energy supersymmetry from the landscape, JHEP 08 (2008) 098 [hep-th/0407043] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  13. E. Silverstein, Counter-intuition and scalar masses, hep-th/0407202 [SPIRES].

  14. J.P. Conlon and F. Quevedo, On the explicit construction and statistics of Calabi-Yau flux vacua, JHEP 10 (2004) 039 [hep-th/0409215] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Dine, D. O’Neil and Z. Sun, Branches of the landscape, JHEP 07 (2005) 014 [hep-th/0501214] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  16. N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [SPIRES].

    Article  ADS  Google Scholar 

  17. V. Barger, C.-W. Chiang, J. Jiang and T. Li, Axion models with high-scale supersymmetry breaking, Nucl. Phys. B 705 (2005) 71 [hep-ph/0410252] [SPIRES].

    Article  ADS  Google Scholar 

  18. V. Barger, J. Jiang, P. Langacker and T. Li, Gauge coupling unification in the standard model, Phys. Lett. B 624 (2005) 233 [hep-ph/0503226] [SPIRES].

    ADS  Google Scholar 

  19. V. Barger, J. Jiang, P. Langacker and T. Li, Non-canonical gauge coupling unification in high-scale supersymmetry breaking, Nucl. Phys. B 726 (2005) 149 [hep-ph/0504093] [SPIRES].

    Article  ADS  Google Scholar 

  20. L.J. Hall and Y. Nomura, A Finely-Predicted Higgs Boson Mass from A Finely-Tuned Weak Scale, JHEP 03 (2010) 076 [arXiv:0910.2235] [SPIRES].

    Article  ADS  Google Scholar 

  21. H. Davoudiasl, R. Kitano, T. Li and H. Murayama, The new minimal standard model, Phys. Lett. B 609 (2005) 117 [hep-ph/0405097] [SPIRES].

    ADS  Google Scholar 

  22. C.D. Froggatt and H.B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [SPIRES].

    Article  ADS  Google Scholar 

  23. J.R. Ellis, S. Kelley and D.V. Nanopoulos, Precision LEP data, supersymmetric GUTs and string unification, Phys. Lett. B 249 (1990) 441 [SPIRES].

    ADS  Google Scholar 

  24. J.R. Ellis, S. Kelley and D.V. Nanopoulos, Probing the desert using gauge coupling unification, Phys. Lett. B 260 (1991) 131 [SPIRES].

    ADS  Google Scholar 

  25. U. Amaldi, W. de Boer and H. Furstenau, Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP, Phys. Lett. B 260 (1991) 447 [SPIRES].

    ADS  Google Scholar 

  26. P. Langacker and M.-x. Luo, Implications of precision electroweak experiments for M t , ρ 0 , sin2 θ W and grand unification, Phys. Rev. D 44 (1991) 817 [SPIRES].

    ADS  Google Scholar 

  27. C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  28. R. Donagi and M. Wijnholt, Model Building with F-theory, arXiv:0802.2969 [SPIRES].

  29. C. Beasley, J.J. Heckman and C. Vafa, GUTs and Exceptional Branes in F-theory — I, JHEP 01 (2009) 058 [arXiv:0802.3391] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  30. C. Beasley, J.J. Heckman and C. Vafa, GUTs and Exceptional Branes in F-theory — II: Experimental Predictions, JHEP 01 (2009) 059 [arXiv:0806.0102] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  31. R. Donagi and M. Wijnholt, Breaking GUT Groups in F-theory, arXiv:0808.2223 [SPIRES].

  32. A. Font and L.E. Ibáñez, Yukawa Structure from U(1) Fluxes in F-theory Grand Unification, JHEP 02 (2009) 016 [arXiv:0811.2157] [SPIRES].

    Article  ADS  Google Scholar 

  33. J. Jiang, T. Li, D.V. Nanopoulos and D. Xie, F-SU(5), Phys. Lett. B 677 (2009) 322 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  34. R. Blumenhagen, Gauge Coupling Unification in F-theory Grand Unified Theories, Phys. Rev. Lett. 102 (2009) 071601 [arXiv:0812.0248] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  35. J. Jiang, T. Li, D.V. Nanopoulos and D. Xie, Flipped SU(5) × U(1) X Models from F-theory, Nucl. Phys. B 830 (2010) 195 [arXiv:0905.3394] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  36. T. Li, SU(5) and SO(10) Models from F-theory with Natural Yukawa Couplings, Phys. Rev. D 81 (2010) 065018 [arXiv:0905.4563] [SPIRES].

    ADS  Google Scholar 

  37. C.T. Hill, Are There Significant Gravitational Corrections to the Unification Scale?, Phys. Lett. B 135 (1984) 47 [SPIRES].

    ADS  Google Scholar 

  38. Q. Shafi and C. Wetterich, Modification of GUT predictions in the presence of spontaneous compactification, Phys. Rev. Lett. 52 (1984) 875 [SPIRES].

    Article  ADS  Google Scholar 

  39. J.R. Ellis, K. Enqvist, D.V. Nanopoulos and K. Tamvakis, Gaugino Masses And Grand Unification, Phys. Lett. B 155 (1985) 381 [SPIRES].

    ADS  Google Scholar 

  40. T. Li and D.V. Nanopoulos, Generalizing Minimal Supergravity, Phys. Lett. B 692 (2010) 121 [arXiv:1002.4183] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  41. Y. Kawamura, Gauge symmetry reduction from the extra space S 1/Z 2, Prog. Theor. Phys. 103 (2000) 613 [hep-ph/9902423] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  42. Y. Kawamura, Triplet-doublet splitting, proton stability and extra dimension, Prog. Theor. Phys. 105 (2001) 999 [hep-ph/0012125] [SPIRES].

    Article  ADS  Google Scholar 

  43. Y. Kawamura, Split multiplets, coupling unification and extra dimension, Prog. Theor. Phys. 105 (2001) 691 [hep-ph/0012352] [SPIRES]

    Article  MATH  ADS  Google Scholar 

  44. G. Altarelli and F. Feruglio, SU(5) grand unification in extra dimensions and proton decay, Phys. Lett. B 511 (2001) 257 [hep-ph/0102301] [SPIRES].

    ADS  Google Scholar 

  45. L.J. Hall and Y. Nomura, Gauge unification in higher dimensions, Phys. Rev. D 64 (2001) 055003 [hep-ph/0103125] [SPIRES].

    ADS  Google Scholar 

  46. A. Hebecker and J. March-Russell, A minimal S 1/(Z 2 × Z 2 ) orbifold GUT, Nucl. Phys. B 613 (2001) 3 [hep-ph/0106166] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  47. T.-j. Li, GUT breaking on M 4 × T 2/(Z 2 × Z 2 ), Phys. Lett. B 520 (2001) 377 [hep-th/0107136] [SPIRES].

    ADS  Google Scholar 

  48. T.-j. Li, N = 2 supersymmetric GUT breaking on T(2) orbifolds, Nucl. Phys. B 619 (2001) 75 [hep-ph/0108120] [SPIRES].

    Article  ADS  Google Scholar 

  49. R. Dermisek and A. Mafi, SO(10) grand unification in five dimensions: Proton decay and the mu problem, Phys. Rev. D 65 (2002) 055002 [hep-ph/0108139] [SPIRES].

    ADS  Google Scholar 

  50. T.-j. Li, Gauge symmmetry and supersymmetry breaking by discrete symmetry, Nucl. Phys. B 633 (2002) 83 [hep-th/0112255] [SPIRES].

    Article  ADS  Google Scholar 

  51. LEP Working Group for Higgs boson searches collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [SPIRES].

    ADS  Google Scholar 

  52. Particle Data Group collaboration, W.M. Yao et al., Review of particle physics, J. Phys. G 33 (2006) 1.

    ADS  Google Scholar 

  53. Tevatron Electroweak Working Group and CDF and D0 collaboration, Combination of CDF and D0 Results on the Mass of the Top Quark, arXiv:0903.2503 [SPIRES].

  54. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [SPIRES].

    ADS  Google Scholar 

  55. K. Melnikov and T.v. Ritbergen, The three-loop relation between the MS-bar and the pole quark masses, Phys. Lett. B 482 (2000) 99 [hep-ph/9912391] [SPIRES].

    ADS  Google Scholar 

  56. J. Hisano, H. Murayama and T. Yanagida, Nucleon decay in the minimal supersymmetric SU(5) grand unification, Nucl. Phys. B 402 (1993) 46 [hep-ph/9207279] [SPIRES].

    Article  ADS  Google Scholar 

  57. H. Murayama and A. Pierce, Not even decoupling can save minimal supersymmetric SU(5), Phys. Rev. D 65 (2002) 055009 [hep-ph/0108104] [SPIRES].

    ADS  Google Scholar 

  58. P. Nath and P. Fileviez Perez, Proton stability in grand unified theories, in strings and in branes, Phys. Rept. 441 (2007) 191 [hep-ph/0601023] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianjun Li.

Additional information

ArXiv ePrint: 1011.0964

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huo, YJ., Li, T. & Nanopoulos, D.V. Canonical gauge coupling unification in the standard model with high-scale supersymmetry breaking. J. High Energ. Phys. 2011, 3 (2011). https://doi.org/10.1007/JHEP09(2011)003

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2011)003

Keywords

Navigation