On the Noether charge and the gravity duals of quantum complexity

Abstract

The physical relevance of the thermodynamic volumes of AdS black holes to the gravity duals of quantum complexity was recently argued by Couch et al. In this paper, by generalizing the Wald-Iyer formalism, we derive a geometric expression for the thermodynamic volume and relate its product with the thermodynamic pressure to the non-derivative part of the gravitational action evaluated on the Wheeler-DeWitt patch. We propose that this action provides an alternative gravity dual of the quantum complexity of the boundary theory. We refer this to “complexity=action 2.0” (CA-2) duality. It is significantly different from the original “complexity=action” (CA) duality as well as the “complexity=volume 2.0” (CV-2) duality proposed by Couch et al. The latter postulates that the complexity is dual to the spacetime volume of the Wheeler-DeWitt patch. To distinguish our new conjecture from the various dualities in literature, we study a number of black holes in Einstein-Maxwell-Dilation theories. We find that for all these black holes, the CA duality generally does not respect the Lloyd bound whereas the CV-2 duality always does. For the CA-2 duality, although in many cases it is consistent with the Lloyd bound, we also find a counter example for which it violates the bound as well.

A preprint version of the article is available at ArXiv.

Change history

  • 17 September 2019

    In the original published version of this paper, the corresponding author was selected by mistake during the review process. Here we state that Minyong Guo is the corresponding author of this paper.

References

  1. [1]

    S. Lloyd, Ultimate physical limits to computation, Nature 406 (2000) 1047.

    ADS  Article  Google Scholar 

  2. [2]

    D. Stanford and L. Susskind, Complexity and shock wave geometries, Phys. Rev. D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].

    ADS  Google Scholar 

  3. [3]

    A.R. Brown et al., Holographic complexity equals bulk action?, Phys. Rev. Lett. 116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    A.R. Brown et al., Complexity, action and black holes, Phys. Rev. D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  5. [5]

    Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    L. Lehner et al., Gravitational action with null boundaries, Phys. Rev. D 94 (2016) 084046 [arXiv:1609.00207] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  7. [7]

    S. Chapman, H. Marrochio and R.C. Myers, Complexity of formation in holography, JHEP 01 (2017) 062 [arXiv:1610.08063] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  8. [8]

    D. Carmi, R.C. Myers and P. Rath, Comments on holographic complexity, JHEP 03 (2017) 118 [arXiv:1612.00433] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  9. [9]

    D. Carmi et al., On the Time Dependence of Holographic Complexity, JHEP 11 (2017) 188 [arXiv:1709.10184] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  10. [10]

    S. Chapman, H. Marrochio and R.C. Myers, Holographic complexity in Vaidya spacetimes. Part I, JHEP 06 (2018) 046 [arXiv:1804.07410] [INSPIRE].

  11. [11]

    S. Chapman, H. Marrochio and R.C. Myers, Holographic complexity in Vaidya spacetimes. Part II, JHEP 06 (2018) 114 [arXiv:1805.07262] [INSPIRE].

  12. [12]

    R.-G. Cai et al., Action growth for AdS black holes, JHEP 09 (2016) 161 [arXiv:1606.08307] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. [13]

    R.-Q. Yang, C. Niu and K.-Y. Kim, Surface counterterms and regularized holographic complexity, JHEP 09 (2017) 042 [arXiv:1701.03706] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  14. [14]

    R.-Q. Yang et al., Comparison of holographic and field theoretic complexities for time dependent thermofield double states, JHEP 02 (2018) 082 [arXiv:1710.00600] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    R.-Q. Yang, Strong energy condition and complexity growth bound in holography, Phys. Rev. D 95 (2017) 086017 [arXiv:1610.05090] [INSPIRE].

    ADS  Google Scholar 

  16. [16]

    R.-Q. Yang and S.-M. Ruan, Comments on joint terms in gravitational action, Class. Quant. Grav. 34 (2017) 175017 [arXiv:1704.03232] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. [17]

    M. Moosa, Evolution of complexity following a global quench, JHEP 03 (2018) 031 [arXiv:1711.02668] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  18. [18]

    M. Moosa, Divergences in the rate of complexification, Phys. Rev. D 97 (2018) 106016 [arXiv:1712.07137] [INSPIRE].

    ADS  Google Scholar 

  19. [19]

    B. Swingle and Y. Wang, Holographic complexity of Einstein-Maxwell-Dilaton gravity, arXiv:1712.09826 [INSPIRE].

  20. [20]

    M. Alishahiha et al., Complexity Growth with Lifshitz Scaling and Hyperscaling Violation, JHEP 07 (2018) 042 [arXiv:1802.06740] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    Y.-S. An and R.-H. Peng, Effect of the dilaton on holographic complexity growth, Phys. Rev. D 97 (2018) 066022 [arXiv:1801.03638] [INSPIRE].

    ADS  Google Scholar 

  22. [22]

    M. Alishahiha, Holographic complexity, Phys. Rev. D 92 (2015) 126009 [arXiv:1509.06614] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  23. [23]

    J.L.F. Barbon and E. Rabinovici, Holographic complexity and spacetime singularities, JHEP 01 (2016) 084 [arXiv:1509.09291] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  24. [24]

    P.A. Cano, Lovelock action with nonsmooth boundaries, Phys. Rev. D 97 (2018) 104048 [arXiv:1803.00172] [INSPIRE].

    ADS  Google Scholar 

  25. [25]

    P.A. Cano, R.A. Hennigar and H. Marrochio, Complexity growth rate in Lovelock gravity, arXiv:1803.02795 [INSPIRE].

  26. [26]

    J. Couch, W. Fischler and P.H. Nguyen, Noether charge, black hole volume and complexity, JHEP 03 (2017) 119 [arXiv:1610.02038] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  27. [27]

    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE].

  28. [28]

    V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].

  29. [29]

    I. Papadimitriou and K. Skenderis, Thermodynamics of asymptotically locally AdS spacetimes, JHEP 08 (2005) 004 [hep-th/0505190] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. [30]

    H. Lü, Y. Pang and C.N. Pope, AdS dyonic black hole and its thermodynamics, JHEP 11 (2013) 033 [arXiv:1307.6243] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  31. [31]

    H.-S. Liu and H. Lü, Scalar charges in asymptotic AdS geometries, Phys. Lett. B 730 (2014) 267 [arXiv:1401.0010] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  32. [32]

    H.-S. Liu, H. Lü and C.N. Pope, Thermodynamics of Einstein-Proca AdS black holes, JHEP 06 (2014) 109 [arXiv:1402.5153] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  33. [33]

    H.-S. Liu and H. Lü, Thermodynamics of Lifshitz black holes, JHEP 12 (2014) 071 [arXiv:1410.6181] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    Z.-Y. Fan and H. Lü, SU(2)-colored (A)dS black holes in conformal gravity, JHEP 02 (2015) 013 [arXiv:1411.5372] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. [35]

    H. Lü, C.N. Pope and Q. Wen, Thermodynamics of AdS black holes in Einstein-scalar gravity, JHEP 03 (2015) 165 [arXiv:1408.1514] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  36. [36]

    Z.-Y. Fan and H. Lü, Thermodynamical first laws of black holes in quadratically-extended gravities, Phys. Rev. D 91 (2015) 064009 [arXiv:1501.00006] [INSPIRE].

    ADS  Google Scholar 

  37. [37]

    Z.-Y. Fan and H. Lü, Charged black holes in colored Lifshitz spacetimes, Phys. Lett. B 743 (2015) 290 [arXiv:1501.01727] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  38. [38]

    B. Chen, Z.-Y. Fan and L.-Y. Zhu, AdS and Lifshitz scalar hairy black holes in Gauss-Bonnet gravity, Phys. Rev. D 94 (2016) 064005 [arXiv:1604.08282] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  39. [39]

    X.-H. Feng et al., Black hole entropy and viscosity bound in Horndeski gravity, JHEP 11 (2015) 176 [arXiv:1509.07142] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  40. [40]

    X.-H. Feng et al., Thermodynamics of charged black holes in Einstein-Horndeski-Maxwell theory, Phys. Rev. D 93 (2016) 044030 [arXiv:1512.02659] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  41. [41]

    Z.-Y. Fan, Black holes with vector hair, JHEP 09 (2016) 039 [arXiv:1606.00684] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  42. [42]

    Z.-Y. Fan, Black holes in vector-tensor theories and their thermodynamics, Eur. Phys. J. C 78 (2018) 65 [arXiv:1709.04392] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    H.-S. Liu, H. Lü and C.N. Pope, Holographic heat current as Noether current, JHEP 09 (2017) 146 [arXiv:1708.02329] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  44. [44]

    Y.-Z. Li, H.-S. Liu and H. Lü, Quasi-topological Ricci polynomial gravities, JHEP 02 (2018) 166 [arXiv:1708.07198] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  45. [45]

    Z.-Y. Fan, Note on the Noether charge and holographic transports, Phys. Rev. D 97 (2018) 066013 [arXiv:1801.07870] [INSPIRE].

    ADS  Google Scholar 

  46. [46]

    P.A. González et al., Four-dimensional asymptotically AdS black holes with scalar hair, JHEP 12 (2013) 021 [arXiv:1309.2161] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  47. [47]

    Z.-Y. Fan and H. Lü, Charged black holes with scalar hair, JHEP 09 (2015) 060 [arXiv:1507.04369] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  48. [48]

    Z.-Y. Fan and B. Chen, Exact formation of hairy planar black holes, Phys. Rev. D 93 (2016) 084013 [arXiv:1512.09145] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  49. [49]

    D. Astefanesei, R. Ballesteros, D. Choque and R. Rojas, Scalar charges and the first law of black hole thermodynamics, Phys. Lett. B 782 (2018) 47 [arXiv:1803.11317] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  50. [50]

    H.-S. Liu, H. Lü and C.N. Pope, Generalized Smarr formula and the viscosity bound for Einstein-Maxwell-dilaton black holes, Phys. Rev. D 92 (2015) 064014 [arXiv:1507.02294] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  51. [51]

    N. Margolus and L.B. Levitin, The Maximum speed of dynamical evolution, Physica D 120 (1998) 188 [quant-ph/9710043] [INSPIRE].

  52. [52]

    S.P. Jordan, Fast quantum computation at arbitrarily low energy, Phys. Rev. A 95 (2017) 032305 [arXiv:1701.01175] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  53. [53]

    R. Jefferson and R.C. Myers, Circuit complexity in quantum field theory, JHEP 10 (2017) 107 [arXiv:1707.08570] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  54. [54]

    S. Chapman et al., Toward a definition of complexity for quantum field theory states, Phys. Rev. Lett. 120 (2018) 121602 [arXiv:1707.08582] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  55. [55]

    R.-Q. Yang, Complexity for quantum field theory states and applications to thermofield double states, Phys. Rev. D 97 (2018) 066004 [arXiv:1709.00921] [INSPIRE].

    ADS  Google Scholar 

  56. [56]

    R. Khan, C. Krishnan and S. Sharma, Circuit complexity in fermionic field theory, arXiv:1801.07620 [INSPIRE].

  57. [57]

    L. Hackl and R.C. Myers, Circuit complexity for free fermions, JHEP 07 (2018) 139 [arXiv:1803.10638] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    R.-Q. Yang et al., Axiomatic complexity in quantum field theory and its applications, arXiv:1803.01797 [INSPIRE].

  59. [59]

    S. Chapman et al., Circuit complexity for thermofield double states, in preparation.

  60. [60]

    M.Y. Guo et al., Circuit complexity for coherent states, in preparation.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhong-Ying Fan.

Additional information

ArXiv ePrint: 1805.03796

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fan, Z., Guo, M. On the Noether charge and the gravity duals of quantum complexity. J. High Energ. Phys. 2018, 31 (2018). https://doi.org/10.1007/JHEP08(2018)031

Download citation

Keywords

  • AdS-CFT Correspondence
  • Gauge-gravity correspondence