Advertisement

Unruh effect for neutrinos interacting with accelerated matter

  • Maxim Dvornikov
Open Access
Regular Article - Theoretical Physics
  • 140 Downloads

Abstract

We study the evolution of neutrinos in a background matter moving with a linear acceleration. The Dirac equation for a massive neutrino electroweakly interacting with background fermions is obtained in a comoving frame where matter is at rest. We solve this Dirac equation for ultrarelativistic neutrinos. The neutrino quantum states in matter moving with a linear acceleration are obtained. We demonstrate that the neutrino electroweak interaction with an accelerated matter leads to the vacuum instability which results in the neutrino-antineutrino pairs creation. We rederive the temperature of the Unruh radiation and find the correction to the Unruh effect due to the specific neutrino interaction with background fermions. As a possible application of the obtained results we discuss the neutrino pairs creation in a core collapsing supernova. The astrophysical upper limit on the neutrino masses is obtained.

Keywords

Neutrino Physics Integrable Equations in Physics Classical Theories of Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S.P. Mikheev and A. Yu. Smirnov, Resonance amplification of oscillations in matter and spectroscopy of solar neutrinos, Sov. J. Nucl. Phys. 42 (1985) 913 [INSPIRE].
  2. [2]
    L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE].ADSGoogle Scholar
  3. [3]
    W.C. Haxton, R.G. Hamish Robertson and A.M. Serenelli, Solar neutrinos: status and prospects, Ann. Rev. Astron. Astrophys. 51 (2013) 21 [arXiv:1208.5723] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A.I. Frank and V.A. Naumov, Interaction of waves with a birefringent medium moving with acceleration, Phys. Atomic Nucl. 76 (2013) 1423.ADSCrossRefGoogle Scholar
  5. [5]
    A. Studenikin and I. Tokarev, Flavour neutrino oscillations in matter moving with acceleration, Nuovo Cim. C 37 (2014) 189.Google Scholar
  6. [6]
    M. Dvornikov, Neutrino interaction with matter in a noninertial frame, JHEP 10 (2014) 53 [arXiv:1408.2735] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    D.V. Ahluwalia, L. Labun and G. Torrieri, The Unruh effect and oscillating neutrinos, arXiv:1505.04082 [INSPIRE].
  8. [8]
    W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].ADSGoogle Scholar
  9. [9]
    L.C.B. Crispino, A. Higuchi and G.E.A. Matsas, The Unruh effect and its applications, Rev. Mod. Phys. 80 (2008) 787 [arXiv:0710.5373] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    S. De Bievre and M. Merkli, The Unruh effect revisited, Class. Quant. Grav. 23 (2006) 6525 [math-ph/0604023] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    E. Martin-Martinez, I. Fuentes and R.B. Mann, Using Berrys phase to detect the Unruh effect at lower accelerations, Phys. Rev. Lett. 107 (2011) 131301 [arXiv:1012.2208] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Dvornikov, Galvano-rotational effect induced by electroweak interactions in pulsars, JCAP 05 (2015) 037 [arXiv:1503.00608] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    T.A. Thompson, A. Burrows and P.A. Pinto, Shock breakout in core-collapse supernovae and its neutrino signature, Astrophys. J. 592 (2003) 434 [astro-ph/0211194] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Spurio, Particles and astrophysics: a multi-messenger approach, Springer, Germany (2015).CrossRefMATHGoogle Scholar
  15. [15]
    M. Dvornikov and A. Studenikin, Neutrino spin evolution in presence of general external fields, JHEP 09 (2002) 016 [hep-ph/0202113] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Dvornikov, Neutrino spin oscillations in matter under the influence of gravitational and electromagnetic fields, JCAP 06 (2013) 015 [arXiv:1306.2659] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    Daya Bay collaboration, F.P. An et al., A new measurement of antineutrino oscillation with the full detector configuration at Daya Bay, arXiv:1505.03456 [INSPIRE].
  18. [18]
    S.M. Boucenna, S. Morisi and J.W.F. Valle, The low-scale approach to neutrino masses, Adv. High Energy Phys. 2014 (2014) 831598 [arXiv:1404.3751] [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    EXO-200 collaboration, J.B. Albert et al., Search for Majorana neutrinos with the first two years of EXO-200 data, Nature 510 (2014) 229 [arXiv:1402.6956] [INSPIRE].
  20. [20]
    C.W. Misner, K.S. Thorn and J.A. Wheller, Gravitation, W.H. Freeman & Co., San Francisco U.S.A. (1973).Google Scholar
  21. [21]
    A.A. Grib, S.G. Mamaev and V.M. Mostepanenko, Quantum effects in intense external fields: methods and results not related to the perturbation theory, Atomizdat, Moscow U.S.S.R. (1980).Google Scholar
  22. [22]
    M. Soffel, B. Müller and W. Greiner, Dirac particles in Rindler space, Phys. Rev. D 22 (1980) 1935 [INSPIRE].ADSGoogle Scholar
  23. [23]
    V.M. Villalba, Creation of spin 1/2 particles by an electric field in de Sitter space, Phys. Rev. D 52 (1995) 3742 [hep-th/9507021] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    C. Itzykson and J.-B. Zuber, Quantum field theory, McGraw-Hill, New York U.S.A. (1980).MATHGoogle Scholar
  25. [25]
    S. Haouat and R. Chekireb, Comment onCreation of spin 1/2 particles by an electric field in de Sitter space”, Phys. Rev. D 87 (2013) 088501 [arXiv:1207.4342] [INSPIRE].ADSGoogle Scholar
  26. [26]
    S.P. Gavrilov and D.M. Gitman, Creation of neutral fermions with anomalous magnetic moments from a vacuum by inhomogeneous magnetic fields, Phys. Rev. D 87 (2013) 125025 [arXiv:1211.6776] [INSPIRE].ADSGoogle Scholar
  27. [27]
    S.P. Gavrilov and D.M. Gitman, Quantization of charged fields in the presence of critical potential steps, arXiv:1506.01156 [INSPIRE].
  28. [28]
    M. Dvornikov, S.P. Gavrilov and D.M. Gitman, Creation of Dirac neutrinos in a dense medium with a time-dependent effective potential, Phys. Rev. D 89 (2014) 105028 [arXiv:1312.2288] [INSPIRE].ADSGoogle Scholar
  29. [29]
    C. Giunti and C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics, Oxford University Press, Oxford U.K. (2007).CrossRefGoogle Scholar
  30. [30]
    A.J. Long, C. Lunardini and E. Sabancilar, Detecting non-relativistic cosmic neutrinos by capture on tritium: phenomenology and physics potential, JCAP 08 (2014) 038 [arXiv:1405.7654] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    D.A.T. Vanzella and G.E.A. Matsas, Decay of accelerated protons and the existence of the Fulling-Davies-Unruh effect, Phys. Rev. Lett. 87 (2001) 151301 [gr-qc/0104030] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    H. Suzuki and K. Yamada, Analytic evaluation of the decay rate for accelerated proton, Phys. Rev. D 67 (2003) 065002 [gr-qc/0211056] [INSPIRE].ADSGoogle Scholar
  33. [33]
    M. Kachelriess, Neutrino self-energy and pair creation in neutron stars, Phys. Lett. B 426 (1998) 89 [hep-ph/9712363] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A. Kusenko and M. Postma, Neutrino production in matter with variable density and a limit on the rotation speed of a neutron star, Phys. Lett. B 545 (2002) 238 [hep-ph/0107253] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    H.B.J. Koers, Perturbative neutrino pair creation by an external source, Phys. Lett. B 605 (2005) 384 [hep-ph/0409259] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    G.G. Raffelt, Stars as laboratories for fundamental physics: the astrophysics of neutrinos, axions and other weakly interacting particles, The University of Chicago Press, Chicago U.S.A. (1996).Google Scholar
  37. [37]
    I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series and products, 7th edition, Elsevier, Amsterdam The Netherlands (2007).Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Physics FacultyNational Research Tomsk State UniversityTomskRussia
  2. 2.Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation (IZMIRAN)TroitskRussia

Personalised recommendations