LHC constraints on Mini-Split anomaly and gauge mediation and prospects for LHC 14 and a future 100 TeV pp collider

  • Hugues Beauchesne
  • Kevin Earl
  • Thomas Grégoire
Open Access
Regular Article - Theoretical Physics


Stringent experimental constraints have raised the lower limit on the masses of squarks to TeV levels, while compatibility with the mass of the Higgs boson provides an upper limit. This two-sided bound has lead to the emergence of Mini-Split theories where gauginos are not far removed from the electroweak scale while scalars are somewhat heavier. This small hierarchy modifies the spectrum of standard anomaly and gauge mediation, leading to Mini-Split deflected anomaly and gauge mediation models. In this paper, we study LHC constraints on these models and their prospects at LHC 14 and a 100 TeV collider. Current constraints on their parameter space come from ATLAS and CMS supersymmetry searches, the known mass of the Higgs boson, and the absence of a color-breaking vacuum. Prospects at LHC 14 and a 100 TeV collider are obtained from these same theoretical constraints in conjunction with background estimates. As would be expected from renormalization group effects, a slightly lighter third generation of squarks is assumed. Higgsinos have masses similar to those of the scalars and are at the origin of the deflection.


Supersymmetry Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.D. Wells, Implications of supersymmetry breaking with a little hierarchy between gauginos and scalars, hep-ph/0306127 [INSPIRE].
  2. [2]
    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65] [hep-ph/0406088] [INSPIRE].
  4. [4]
    A. Arvanitaki, N. Craig, S. Dimopoulos and G. Villadoro, Mini-Split, JHEP 02 (2013) 126 [arXiv:1210.0555] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    CMS collaboration, Measurement of the properties of a Higgs boson in the four-lepton final state, Phys. Rev. D 89 (2014) 092007 [arXiv:1312.5353] [INSPIRE].
  6. [6]
    ATLAS collaboration, Measurement of the Higgs boson mass from the H → γγ and HZZ →4ℓ channels with the ATLAS detector using 25 fb −1 of pp collision data, Phys. Rev. D 90 (2014) 052004 [arXiv:1406.3827] [INSPIRE].
  7. [7]
    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].
  9. [9]
    M. Dine and W. Fischler, A Phenomenological Model of Particle Physics Based on Supersymmetry, Phys. Lett. B 110 (1982) 227 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    C.R. Nappi and B.A. Ovrut, Supersymmetric Extension of the SU(3) × SU(2) × U(1) Model, Phys. Lett. B 113 (1982) 175 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    L. Álvarez-Gaumé, M. Claudson and M.B. Wise, Low-Energy Supersymmetry, Nucl. Phys. B 207 (1982) 96 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Dine and A.E. Nelson, Dynamical supersymmetry breaking at low-energies, Phys. Rev. D 48 (1993) 1277 [hep-ph/9303230] [INSPIRE].ADSGoogle Scholar
  13. [13]
    M. Dine, A.E. Nelson and Y. Shirman, Low-energy dynamical supersymmetry breaking simplified, Phys. Rev. D 51 (1995) 1362 [hep-ph/9408384] [INSPIRE].ADSGoogle Scholar
  14. [14]
    M. Dine, A.E. Nelson, Y. Nir and Y. Shirman, New tools for low-energy dynamical supersymmetry breaking, Phys. Rev. D 53 (1996) 2658 [hep-ph/9507378] [INSPIRE].ADSGoogle Scholar
  15. [15]
    R. Rattazzi, A. Strumia and J.D. Wells, Phenomenology of deflected anomaly mediation, Nucl. Phys. B 576 (2000) 3 [hep-ph/9912390] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    E. Bagnaschi, G.F. Giudice, P. Slavich and A. Strumia, Higgs Mass and Unnatural Supersymmetry, JHEP 09 (2014) 092 [arXiv:1407.4081] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Jung and J.D. Wells, Gaugino physics of split supersymmetry spectra at the LHC and future proton colliders, Phys. Rev. D 89 (2014) 075004 [arXiv:1312.1802] [INSPIRE].ADSGoogle Scholar
  18. [18]
    A. Cesarini, F. Fucito and A. Lionetto, Deflected Anomaly Mediation and Neutralino Dark Matter, Phys. Rev. D 75 (2007) 025026 [hep-ph/0611098] [INSPIRE].ADSGoogle Scholar
  19. [19]
    N. Yokozaki, Electroweak Symmetry Breaking and Singlino Dark Matter with Deflected Anomaly Mediation, JHEP 05 (2009) 095 [arXiv:0903.2632] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    N. Setzer and S. Spinner, When Anomaly Mediation is UV Sensitive, JHEP 06 (2011) 137 [arXiv:1008.3774] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  21. [21]
    N. Okada, Positively deflected anomaly mediation, Phys. Rev. D 65 (2002) 115009 [hep-ph/0202219] [INSPIRE].ADSGoogle Scholar
  22. [22]
    N. Okada and H.M. Tran, Positively deflected anomaly mediation in the light of the Higgs boson discovery, Phys. Rev. D 87 (2013) 035024 [arXiv:1212.1866] [INSPIRE].ADSGoogle Scholar
  23. [23]
    J. de Blas and A. Delgado, Singlet deflected anomaly/gauge mediation, Phys. Lett. B 708 (2012) 300 [arXiv:1108.2511] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Ibe, T. Moroi and T.T. Yanagida, Possible Signals of Wino LSP at the Large Hadron Collider, Phys. Lett. B 644 (2007) 355 [hep-ph/0610277] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Ibe and T.T. Yanagida, The Lightest Higgs Boson Mass in Pure Gravity Mediation Model, Phys. Lett. B 709 (2012) 374 [arXiv:1112.2462] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Ibe, S. Matsumoto and T.T. Yanagida, Pure Gravity Mediation with m 3/2 = 10-100 TeV, Phys. Rev. D 85 (2012) 095011 [arXiv:1202.2253] [INSPIRE].ADSGoogle Scholar
  27. [27]
    B. Bhattacherjee, B. Feldstein, M. Ibe, S. Matsumoto and T.T. Yanagida, Pure gravity mediation of supersymmetry breaking at the Large Hadron Collider, Phys. Rev. D 87 (2013) 015028 [arXiv:1207.5453] [INSPIRE].ADSGoogle Scholar
  28. [28]
    Y. Kahn, M. McCullough and J. Thaler, Auxiliary Gauge Mediation: A New Route to Mini-Split Supersymmetry, JHEP 11 (2013) 161 [arXiv:1308.3490] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    ATLAS collaboration, Search for chargino and neutralino production in final states with one lepton, two b-jets consistent with a Higgs boson and missing transverse momentum with the ATLAS detector in 20.3 fb −1 of \( \sqrt{s}=8 \) TeV pp collisions, ATLAS-CONF-2013-093 (2013) [ATLAS-COM-CONF-2013-102] [INSPIRE].
  30. [30]
    ATLAS collaboration, Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 05 (2014) 071 [arXiv:1403.5294] [INSPIRE].
  31. [31]
    ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, JHEP 04 (2014) 169 [arXiv:1402.7029] [INSPIRE].
  32. [32]
    ATLAS collaboration, Search for supersymmetry at \( \sqrt{s}=8 \) TeV in final states with jets and two same-sign leptons or three leptons with the ATLAS detector, JHEP 06 (2014) 035 [arXiv:1404.2500] [INSPIRE].
  33. [33]
    ATLAS collaboration, Search for strong production of supersymmetric particles in final states with missing transverse momentum and at least three b-jets at \( \sqrt{s}=8 \) TeV proton-proton collisions with the ATLAS detector, JHEP 10 (2014) 024 [arXiv:1407.0600] [INSPIRE].
  34. [34]
    CMS collaboration, Searches for electroweak neutralino and chargino production in channels with Higgs, Z and W bosons in pp collisions at 8 TeV, Phys. Rev. D 90 (2014) 092007 [arXiv:1409.3168] [INSPIRE].
  35. [35]
    CMS collaboration, Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 06 (2014) 055 [arXiv:1402.4770] [INSPIRE].
  36. [36]
    CMS collaboration, Search for supersymmetry in pp collisions at \( \sqrt{s}=8 \) TeV in events with two opposite sign leptons, large number of jets, b-tagged jets, and large missing transverse energy, CMS-PAS-SUS-13-016 (2013) [INSPIRE].
  37. [37]
    N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner and T. Zorawski, Simply Unnatural Supersymmetry, arXiv:1212.6971 [INSPIRE].
  38. [38]
    G.F. Giudice and A. Masiero, A Natural Solution to the mu Problem in Supergravity Theories, Phys. Lett. B 206 (1988) 480 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A. Gupta, D.E. Kaplan and T. Zorawski, Gaugomaly Mediation Revisited, JHEP 11 (2013) 149 [arXiv:1212.6969] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    T. Gherghetta, G.F. Giudice and J.D. Wells, Phenomenological consequences of supersymmetry with anomaly induced masses, Nucl. Phys. B 559 (1999) 27 [hep-ph/9904378] [INSPIRE].
  41. [41]
    M. Picariello and A. Strumia, Next-to-leading order corrections to gauge mediated gaugino masses, Nucl. Phys. B 529 (1998) 81 [hep-ph/9802446] [INSPIRE].
  42. [42]
    J.L. Feng, T. Moroi, L. Randall, M. Strassler and S.-f. Su, Discovering supersymmetry at the Tevatron in wino LSP scenarios, Phys. Rev. Lett. 83 (1999) 1731 [hep-ph/9904250] [INSPIRE].
  43. [43]
    M. Toharia and J.D. Wells, Gluino decays with heavier scalar superpartners, JHEP 02 (2006) 015 [hep-ph/0503175] [INSPIRE].
  44. [44]
    D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    L.N. Mihaila, J. Salomon and M. Steinhauser, Renormalization constants and β-functions for the gauge couplings of the Standard Model to three-loop order, Phys. Rev. D 86 (2012) 096008 [arXiv:1208.3357] [INSPIRE].ADSGoogle Scholar
  46. [46]
    M. Holthausen, K.S. Lim and M. Lindner, Planck scale Boundary Conditions and the Higgs Mass, JHEP 02 (2012) 037 [arXiv:1112.2415] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  47. [47]
    G.F. Giudice and A. Strumia, Probing High-Scale and Split Supersymmetry with Higgs Mass Measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  48. [48]
    A. Sirlin and R. Zucchini, Dependence of the Higgs coupling hMS(M) on mH and the possible onset of new physics, Nucl. Phys. B 266 (1986) 389 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    M.E. Cabrera, J.A. Casas and A. Delgado, Upper Bounds on Superpartner Masses from Upper Bounds on the Higgs Boson Mass, Phys. Rev. Lett. 108 (2012) 021802 [arXiv:1108.3867] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    A.V. Bednyakov, A.F. Pikelner and V.N. Velizhanin, Anomalous dimensions of gauge fields and gauge coupling β-functions in the Standard Model at three loops, JHEP 01 (2013) 017 [arXiv:1210.6873] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    A.V. Bednyakov, A.F. Pikelner and V.N. Velizhanin, Yukawa coupling β-functions in the Standard Model at three loops, Phys. Lett. B 722 (2013) 336 [arXiv:1212.6829] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  52. [52]
    A.V. Bednyakov, A.F. Pikelner and V.N. Velizhanin, Higgs self-coupling β-function in the Standard Model at three loops, Nucl. Phys. B 875 (2013) 552 [arXiv:1303.4364] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  53. [53]
    J. Barnard, B. Farmer, T. Gherghetta and M. White, Natural gauge mediation with a bino NLSP at the LHC, Phys. Rev. Lett. 109 (2012) 241801 [arXiv:1208.6062] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  56. [56]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  57. [57]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    M. Papucci, K. Sakurai, A. Weiler and L. Zeune, Fastlim: a fast LHC limit calculator, Eur. Phys. J. C 74 (2014) 3163 [arXiv:1402.0492] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].
  60. [60]
    A. Kulesza and L. Motyka, Threshold resummation for squark-antisquark and gluino-pair production at the LHC, Phys. Rev. Lett. 102 (2009) 111802 [arXiv:0807.2405] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    A. Kulesza and L. Motyka, Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC, Phys. Rev. D 80 (2009) 095004 [arXiv:0905.4749] [INSPIRE].ADSGoogle Scholar
  62. [62]
    W. Beenakker, S. Brensing, M. Krämer, A. Kulesza, E. Laenen and I. Niessen, Soft-gluon resummation for squark and gluino hadroproduction, JHEP 12 (2009) 041 [arXiv:0909.4418] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    W. Beenakker et al., Squark and Gluino Hadroproduction, Int. J. Mod. Phys. A 26 (2011) 2637 [arXiv:1105.1110] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    W. Beenakker, R. Hopker and M. Spira, PROSPINO: A Program for the production of supersymmetric particles in next-to-leading order QCD, hep-ph/9611232 [INSPIRE].
  65. [65]
    A.L. Read, Presentation of search results: The CL s technique, J. Phys. G 28 (2002) 2693 [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    T.A.W. Martin and D.E. Morrissey, Electroweakino constraints from LHC data, JHEP 12 (2014) 168 [arXiv:1409.6322] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    CMS collaboration, Study of the Discovery Reach in Searches for Supersymmetry at CMS with 3000/f b, CMS-PAS-FTR-13-014 (2013) [INSPIRE].
  68. [68]
    ATLAS collaboration, Search for Supersymmetry at the high luminosity LHC with the ATLAS experiment, ATL-PHYS-PUB-2014-010 (2014).
  69. [69]
    I. Hinchliffe and F. Paige, High mass supersymmetry with high-energy hadron colliders, hep-ph/0201141 [INSPIRE].
  70. [70]
    T. Cohen et al., SUSY Simplified Models at 14, 33 and 100 TeV Proton Colliders, JHEP 04 (2014) 117 [arXiv:1311.6480] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    J. Anderson et al., Snowmass Energy Frontier Simulations, arXiv:1309.1057 [INSPIRE].
  72. [72]
    A. Avetisyan et al., Methods and Results for Standard Model Event Generation at \( \sqrt{s}=14 \) TeV, 33 TeV and 100 TeV Proton Colliders (A Snowmass Whitepaper), arXiv:1308.1636 [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Hugues Beauchesne
    • 1
  • Kevin Earl
    • 1
  • Thomas Grégoire
    • 1
  1. 1.Ottawa-Carleton Institute for Physics, Department of PhysicsCarleton UniversityOttawaCanada

Personalised recommendations