Chances for SUSY-GUT in the LHC Epoch

  • Zurab Berezhiani
  • Marco Chianese
  • Gennaro Miele
  • Stefano Morisi
Open Access
Regular Article - Theoretical Physics

Abstract

The magic couple of SUSY and GUT still appears the most elegant and predictive physics concept beyond the Standard Model. Since up to now LHC found no evidence for supersymmetric particles it becomes of particular relevance to determine an upper bound of the energy scale they have to show up. In particular, we have analyzed a generic SUSY-GUT model assuming one step unification like in SU(5), and adopting naturalness principles, we have obtained general bounds on the mass spectrum of SUSY particles. We claim that if a SUSY gauge coupling unification takes place, the lightest gluino or Higgsino cannot have a mass larger than ∼ 20 TeV. Such a limit is of interest for planning new accelerator machines.

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    S. Dimopoulos, S. Raby and F. Wilczek, Supersymmetry and the Scale of Unification, Phys. Rev. D 24 (1981) 1681 [INSPIRE].ADSGoogle Scholar
  4. [4]
    L.E. Ibáñez and G.G. Ross, Low-Energy Predictions in Supersymmetric Grand Unified Theories, Phys. Lett. B 105 (1981) 439 [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    M.B. Einhorn and D.R.T. Jones, The Weak Mixing Angle and Unification Mass in Supersymmetric SU(5), Nucl. Phys. B 196 (1982) 475 [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    W.J. Marciano and G. Senjanović, Predictions of Supersymmetric Grand Unified Theories, Phys. Rev. D 25 (1982) 3092 [INSPIRE].ADSGoogle Scholar
  7. [7]
    U. Amaldi, W. de Boer and H. Furstenau, Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP, Phys. Lett. B 260 (1991) 447 [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    S. Dimopoulos and H. Georgi, Softly Broken Supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    N. Sakai, Naturalness in Supersymmetric Guts, Z. Phys. C 11 (1981) 153 [INSPIRE].ADSGoogle Scholar
  10. [10]
    H. Georgi, An almost realistic gauge hierarchy, Phys. Lett. B 108 (1982) 283 [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    A. Masiero, D.V. Nanopoulos, K. Tamvakis and T. Yanagida, Naturally Massless Higgs Doublets in Supersymmetric SU(5), Phys. Lett. B 115 (1982) 380 [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    B. Grinstein, A Supersymmetric SU(5) Gauge Theory with No Gauge Hierarchy Problem, Nucl. Phys. B 206 (1982) 387 [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    J. Hisano, T. Moroi, K. Tobe and T. Yanagida, Suppression of proton decay in the missing partner model for supersymmetric SU(5) GUT, Phys. Lett. B 342 (1995) 138 [hep-ph/9406417] [INSPIRE].
  14. [14]
    Z. Berezhiani and Z. Tavartkiladze, Anomalous U(1) symmetry and missing doublet SU(5) model, Phys. Lett. B 396 (1997) 150 [hep-ph/9611277] [INSPIRE].
  15. [15]
    S. Dimopoulos and F. Wilczek, Incomplete multiplets in supersymmetric unified models, NSF-ITP-82-07 (1981).
  16. [16]
    M. Srednicki, Supersymmetric Grand Unified Theories and the Early Universe, Nucl. Phys. B 202 (1982) 327 [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    K.S. Babu and S.M. Barr, Natural gauge hierarchy in SO(10), Phys. Rev. D 50 (1994) 3529 [hep-ph/9402291] [INSPIRE].
  18. [18]
    Z. Berezhiani and Z. Tavartkiladze, More missing VEV mechanism in supersymmetric SO(10) model, Phys. Lett. B 409 (1997) 220 [hep-ph/9612232] [INSPIRE].
  19. [19]
    Z.G. Berezhiani and G.R. Dvali, Possible solution of the hierarchy problem in supersymmetrical grand unification theories, Bull. Lebedev Phys. Inst. 5 (1989) 55 [Kratk. Soobshch. Fiz. 5 (1989) 42].Google Scholar
  20. [20]
    R. Barbieri, G.R. Dvali and M. Moretti, Back to the doublet - triplet splitting problem, Phys. Lett. B 312 (1993) 137 [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    Z. Berezhiani, C. Csáki and L. Randall, Could the supersymmetric Higgs particles naturally be pseudoGoldstone bosons?, Nucl. Phys. B 444 (1995) 61 [hep-ph/9501336] [INSPIRE].
  22. [22]
    R. Barbieri, G.R. Dvali, A. Strumia, Z. Berezhiani and L.J. Hall, Flavor in supersymmetric grand unification: A democratic approach, Nucl. Phys. B 432 (1994) 49 [hep-ph/9405428] [INSPIRE].
  23. [23]
    Z. Berezhiani, SUSY SU(6) GIFT for doublet-triplet splitting and fermion masses, Phys. Lett. B 355 (1995) 481 [hep-ph/9503366] [INSPIRE].
  24. [24]
    G.R. Dvali and S. Pokorski, The role of the anomalous U(1)A for the solution of the doublet-triplet splitting problem, Phys. Rev. Lett. 78 (1997) 807 [hep-ph/9610431] [INSPIRE].
  25. [25]
    K. Inoue, A. Kakuto and H. Takano, Higgs as (Pseudo)Goldstone Particles, Prog. Theor. Phys. 75 (1986) 664 [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    A.A. Anselm and A.A. Johansen, SUSY GUT with Automatic Doublet-Triplet Hierarchy, Phys. Lett. B 200 (1988) 331 [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    A.A. Anselm, A Supersymmetric Theory of Grand Unification With Automatic Hierarchy and Low-energy Physics, Sov. Phys. JETP 67 (1988) 663 [INSPIRE].Google Scholar
  28. [28]
    R. Barbieri, G.R. Dvali and A. Strumia, Grand unified supersymmetric Higgs bosons as pseudoGoldstone particles, Nucl. Phys. B 391 (1993) 487 [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    Z. Berezhiani, P.H. Chankowski, A. Falkowski and S. Pokorski, Double protection of the Higgs potential in a supersymmetric little Higgs model, Phys. Rev. Lett. 96 (2006) 031801 [hep-ph/0509311] [INSPIRE].
  30. [30]
    T.S. Roy and M. Schmaltz, Naturally heavy superpartners and a little Higgs, JHEP 01 (2006) 149 [hep-ph/0509357] [INSPIRE].
  31. [31]
    C. Csáki, G. Marandella, Y. Shirman and A. Strumia, The Super-little Higgs, Phys. Rev. D 73 (2006) 035006 [hep-ph/0510294] [INSPIRE].
  32. [32]
    Z. Berezhiani, Through the looking-glass: Alices adventures in mirror world, hep-ph/0508233 [INSPIRE].
  33. [33]
    A. Falkowski, S. Pokorski and M. Schmaltz, Twin SUSY, Phys. Rev. D 74 (2006) 035003 [hep-ph/0604066] [INSPIRE].
  34. [34]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001.Google Scholar
  35. [35]
  36. [36]
  37. [37]
    G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65] [hep-ph/0406088] [INSPIRE].
  38. [38]
    N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].
  39. [39]
    R. Barbieri and A. Strumia, TheLEP paradox’, hep-ph/0007265].
  40. [40]
    Z. Berezhiani, Unified picture of the particle and sparticle masses in SUSY GUT, Phys. Lett. B 417 (1998) 287 [hep-ph/9609342] [INSPIRE].
  41. [41]
    Z. Berezhiani, Problem of flavor in SUSY GUT and horizontal symmetry, Nucl. Phys. Proc. Suppl. 52A (1997) 153 [hep-ph/9607363] [INSPIRE].
  42. [42]
    A. Anselm and Z. Berezhiani, Weak mixing angles as dynamical degrees of freedom, Nucl. Phys. B 484 (1997) 97 [hep-ph/9605400] [INSPIRE].
  43. [43]
    Z. Berezhiani and A. Rossi, Flavor structure, flavor symmetry and supersymmetry, Nucl. Phys. Proc. Suppl. 101 (2001) 410 [hep-ph/0107054] [INSPIRE].
  44. [44]
    Z. Berezhiani and F. Nesti, Supersymmetric SO(10) for fermion masses and mixings: Rank-1 structures of flavor, JHEP 03 (2006) 041 [hep-ph/0510011] [INSPIRE].
  45. [45]
    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].
  46. [46]
    TLEP Design Study Working Group collaboration, M. Bicer et al., First Look at the Physics Case of TLEP, JHEP 01 (2014) 164 [arXiv:1308.6176] [INSPIRE].
  47. [47]
  48. [48]
    S.P. Martin, A supersymmetry primer, hep-ph/9709356 [INSPIRE].
  49. [49]
    G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].CrossRefADSGoogle Scholar
  50. [50]
    A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].CrossRefADSGoogle Scholar
  51. [51]
    Z. Berezhiani, Fermion masses and mixing in SUSY GUT, In Trieste 1995, High energy physics and cosmology, pg. 618-652 [hep-ph/9602325].
  52. [52]
    C.D. Froggatt and H.B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].CrossRefADSGoogle Scholar
  53. [53]
    Z.G. Berezhiani, The Weak Mixing Angles in Gauge Models with Horizontal Symmetry: A New Approach to Quark and Lepton Masses, Phys. Lett. B 129 (1983) 99 [INSPIRE].CrossRefADSGoogle Scholar
  54. [54]
    Z.G. Berezhiani, Horizontal Symmetry and Quark-Lepton Mass Spectrum: The SU(5) × SU(3)-h Model, Phys. Lett. B 150 (1985) 177 [INSPIRE].CrossRefADSGoogle Scholar
  55. [55]
    S. Dimopoulos, Natural Generation of Fermion Masses, Phys. Lett. B 129 (1983) 417 [INSPIRE].CrossRefADSGoogle Scholar
  56. [56]
    Z. Berezhiani and A. Rossi, Predictive grand unified textures for quark and neutrino masses and mixings, Nucl. Phys. B 594 (2001) 113 [hep-ph/0003084] [INSPIRE].
  57. [57]
    Z. Berezhiani and A. Rossi, Grand unified textures for neutrino and quark mixings, JHEP 03 (1999) 002 [hep-ph/9811447] [INSPIRE].
  58. [58]
    L.N. Mihaila, J. Salomon and M. Steinhauser, Gauge Coupling β-functions in the Standard Model to Three Loops, Phys. Rev. Lett. 108 (2012) 151602 [arXiv:1201.5868] [INSPIRE].CrossRefADSGoogle Scholar
  59. [59]
    L.N. Mihaila, J. Salomon and M. Steinhauser, Renormalization constants and β-functions for the gauge couplings of the Standard Model to three-loop order, Phys. Rev. D 86 (2012) 096008 [arXiv:1208.3357] [INSPIRE].ADSGoogle Scholar
  60. [60]
    L. Mihaila, J. Salomon and M. Steinhauser, Gauge coupling β-functions in the Standard Model, PoS(LL2012)043 [arXiv:1209.5497] [INSPIRE].
  61. [61]
    M.-x. Luo and Y. Xiao, Two loop renormalization group equations in the standard model, Phys. Rev. Lett. 90 (2003) 011601 [hep-ph/0207271] [INSPIRE].
  62. [62]
    K.G. Chetyrkin and M.F. Zoller, Three-loop β-functions for top-Yukawa and the Higgs self-interaction in the Standard Model, JHEP 06 (2012) 033 [arXiv:1205.2892] [INSPIRE].CrossRefADSGoogle Scholar
  63. [63]
    A.V. Bednyakov, A.F. Pikelner and V.N. Velizhanin, Yukawa coupling β-functions in the Standard Model at three loops, Phys. Lett. B 722 (2013) 336 [arXiv:1212.6829] [INSPIRE].CrossRefMATHADSGoogle Scholar
  64. [64]
    S.P. Martin and M.T. Vaughn, Two loop renormalization group equations for soft supersymmetry breaking couplings, Phys. Rev. D 50 (1994) 2282 [Erratum ibid. D 78 (2008) 039903] [hep-ph/9311340] [INSPIRE].
  65. [65]
    H. Baer, J. Ferrandis, S. Kraml and W. Porod, On the treatment of threshold effects in SUSY spectrum computations, Phys. Rev. D 73 (2006) 015010 [hep-ph/0511123] [INSPIRE].
  66. [66]
    D.R.T. Jones, The Two Loop β-function for a G(1) × G 2 Gauge Theory, Phys. Rev. D 25 (1982) 581 [INSPIRE].ADSGoogle Scholar
  67. [67]
    K.G. Chetyrkin, J.H. Kuhn and M. Steinhauser, RunDec: A Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun. 133 (2000) 43 [hep-ph/0004189] [INSPIRE].
  68. [68]
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].
  69. [69]
    B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].
  70. [70]
    S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].CrossRefADSGoogle Scholar
  71. [71]
    F. Wilczek and A. Zee, Operator Analysis of Nucleon Decay, Phys. Rev. Lett. 43 (1979) 1571 [INSPIRE].CrossRefADSGoogle Scholar
  72. [72]
    Super-Kamiokande collaboration, H. Nishino et al., Search for Nucleon Decay into Charged Anti-lepton plus Meson in Super-Kamiokande I and II, Phys. Rev. D 85 (2012) 112001 [arXiv:1203.4030] [INSPIRE].
  73. [73]
    J. Hisano, D. Kobayashi and N. Nagata, Enhancement of Proton Decay Rates in Supersymmetric SU(5) Grand Unified Models, Phys. Lett. B 716 (2012) 406 [arXiv:1204.6274] [INSPIRE].CrossRefADSGoogle Scholar
  74. [74]
    J.P. Derendinger and C.A. Savoy, Gaugino Masses and a New Mechanism for Proton Decay in Supersymmetric Theories, Phys. Lett. B 118 (1982) 347 [INSPIRE].CrossRefADSGoogle Scholar
  75. [75]
    Z. Berezhiani, F. Nesti and L. Pilo, Soft SUSY breaking contributions to proton decay, JHEP 10 (2006) 030 [hep-ph/0607303] [INSPIRE].
  76. [76]
    Z.G. Berezhiani and J.L. Chkareuli, Proton decay in grand unified models with horizontal symmetry, JETP Lett. 38 (1983) 33 [INSPIRE].ADSGoogle Scholar
  77. [77]
    Z.G. Berezhiani and J.L. Chkareuli, Quark-leptonic families in a model with SU(5) × SU(3) symmetry, (In russian), Sov. J. Nucl. Phys. 37 (1983) 618 [Yad. Fiz. 37 (1983) 1043] [INSPIRE].
  78. [78]
    S. Weinberg, Supersymmetry at Ordinary Energies. 1. Masses and Conservation Laws, Phys. Rev. D 26 (1982) 287 [INSPIRE].
  79. [79]
    N. Sakai and T. Yanagida, Proton Decay in a Class of Supersymmetric Grand Unified Models, Nucl. Phys. B 197 (1982) 533 [INSPIRE].CrossRefADSGoogle Scholar
  80. [80]
    Super-Kamiokande collaboration, K. Abe et al., Search for proton decay via p → νK + using 260 kiloton · year data of Super-Kamiokande, Phys. Rev. D 90 (2014) 072005 [arXiv:1408.1195] [INSPIRE].
  81. [81]
    T. Goto and T. Nihei, Effect of RRRR dimension five operator on the proton decay in the minimal SU(5) SUGRA GUT model, Phys. Rev. D 59 (1999) 115009 [hep-ph/9808255] [INSPIRE].
  82. [82]
    H. Murayama and A. Pierce, Not even decoupling can save minimal supersymmetric SU(5), Phys. Rev. D 65 (2002) 055009 [hep-ph/0108104] [INSPIRE].
  83. [83]
    J. Hisano, H. Murayama and T. Yanagida, Peccei-Quinn symmetry and suppression of nucleon decay rates in SUSY GUTs, Phys. Lett. B 291 (1992) 263 [INSPIRE].CrossRefADSGoogle Scholar
  84. [84]
    K.S. Babu and S.M. Barr, Natural suppression of Higgsino mediated proton decay in supersymmetric SO(10), Phys. Rev. D 48 (1993) 5354 [hep-ph/9306242] [INSPIRE].
  85. [85]
    Z. Berezhiani, Z. Tavartkiladze and M. Vysotsky, d = 5 operators in SUSY GUT: Fermion masses versus proton decay, hep-ph/9809301.
  86. [86]
    Z.G. Berezhiani, Predictive SUSY SO(10) model with very low tan Beta, Phys. Lett. B 355 (1995) 178 [hep-ph/9505384] [INSPIRE].
  87. [87]
    G.R. Dvali, Light color triplet Higgs is compatible with proton stability: An alternative approach to the doublet-triplet splitting problem, Phys. Lett. B 372 (1996) 113 [hep-ph/9511237] [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Zurab Berezhiani
    • 1
    • 2
  • Marco Chianese
    • 3
    • 4
  • Gennaro Miele
    • 3
    • 4
  • Stefano Morisi
    • 3
    • 4
  1. 1.Dipartimento di Scienze Fisiche e ChimicheUniversità di L’AquilaL’AquilaItaly
  2. 2.INFN, Laboratori Nazionali del Gran SassoL’AquilaItaly
  3. 3.Dipartimento di FisicaUniversità di Napoli Federico IINapoliItaly
  4. 4.INFN, Sezione di NapoliNapoliItaly

Personalised recommendations